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Summarization with Pointer-Generator Networks
This talk is based on paper: 
Abigail See, Peter J. Lui, Christopher D. Manning. Get to the Point: 
Summarization with Pointer Generator Networks. ACL 2017. 

Source code & data available at GitHub repository: 
https://github.com/abisee/pointer-generator
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Summarization
Goal: 

For the given document/document collection create a summary with all salient
information.

Approaches differ for:
- purpose: generic vs query-based
- input type: single document vs multi-document
- output type: extractive vs abstractive
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Extractive Summarization

Created summary is coherent, grammatical, acurite. 
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Abstractive Summarization

Created summary is sophisticated, includes 
paraphrasing, new words, real-world 
knowledge, but suffers from factoid 
inaccuracy, repetition, and OOV handling.    
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Recurrent Neural Networks - RNNs
RNNs are a class of neural networks designed for a sequence processing.
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Recurrent Neural Networks - RNNs

from Speech and Language Processing by Dan Jurafsky and James H. Martin.
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Recurrent Neural Networks - RNNs
Input: 

Xt - word vector
In most of the cases: word embeddings such as word2vec or Glove
in combination with POS, discretized TF-IDF values, …      

Output:
Yt- output vector
In most of the cases: f is softmax function
Interpretation: probability distribution over the 
possible output classes  
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Sequence to Sequence Model (Seq2Seq)
many-to-many mapping (many-to-one + one-to-many) 
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Sequence to Sequence Model 
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Sequence to Sequence Model
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Sequence to sequence models perform badly on long sentences. 
Intuition:

Attention
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Sequence to Sequence Model with Attention

Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015. 
Animations are taken from https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3 \o/
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Sequence to Sequence Model with Attention
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Sequence to Sequence Model with Attention
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Sequence to Sequence Model with Attention
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Sequence to Sequence Model with Attention
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Sequence to Sequence Model with Attention
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Sequence to Sequence Model with Attention
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Sequence to Sequence Model with Attention
Variations of alignment functions: 
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Summarization - Seq2Seq Model with Attention
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Bidirectional Recurrent Neural Networks - BiRNN
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Get to the point! 
Seq2Seq with attention part: 
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Pointer Networks (Ptr-Nets)
Sequence-to-sequence networks with the output elements that correspond to 
positions in an input sequence.

Vinyals et al. Pointer Networks. NIPS 2015.
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Pointer Networks
Instead of using attention to blend hidden units of an encoder to a context vector 
at each docoder step, Ptr-Nets use attention as a pointer to select a member of 
the input sequence as the output. 
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Summarization with Pointer-Generator Networks

Pgen from [0, 1] is used as a soft switch to choose between generating or copying.   
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Get to the point! 
Pointer-generator network: 
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Coverage
Originally from NMT: 
vector that indicates whether a source word is translated or not 

It should help with over-translation and under-translation. 

In the context of document summarization, it should control repetition. 
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Dataset
CNN/Daily Mail dataset of online news articles paired with multi-sentence 
summaries.

● articles: 781 tokens on average
● summaries: 56 tokens on average

Train set: 287, 226
Validation set: 13, 368
Test set: 11, 490
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Dataset
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Summarization Evaluation
ROUGE:  Recall-Oriented Understudy for Gisting Evaluation 

Standard measures are ROUGE-1, ROUGE-2, ROUGE-L (longest common 
sequence) 
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Experiment - in numbers
Word representations: 128-dimensional word embeddings
Source and target vocabulary size: 50, 000 words/150 000 words
Truncated article size: 400 tokens
Maximal summary length: 100
Hidden state: 256-dimensional vector
Total number of network parameters: 21499600+1153+512 = 21 501 265

Adagard with learning rate 0.15 and an initial accumulator value 0.1
Gradient clipping with a maximum gradient norm of 2
Early stopping 
Batch size: 16
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Baseline Model: 
Training on Single Tesla K40m GPU 600 000 iterations (33 epochs)
Training time for baseline model: 4 days 14 hours / 8 days 21 hours

Pointer-Generator Model:
Training on Single Tesla K40m GPU 230 000 iterations (13 epochs)
Training time for baseline model: 3 days 4 hours 

Final model:
+ additional 3000 iterations with coverage (2 hours)

Experiment - in numbers

33



Experiment - in numbers
At test time:

Maximal summary length: 120 

Beam search with beam size: 4
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Thank you! 
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