

Deep learning for football video analysis

• Michał Warchalski, Data Scientist at Nordeus

About me

• Research at ML&AI Team at Nordeus

• PhD in Mathematics at the University of Bonn

About Nordeus

GAMES Top Eleven Golden Boot CREW 170 People, 21 Nationalities

Deep learning for football video analysis

About our games

• Top Eleven: over 190 million registered users

• Golden Boot: 30 million played so far

Presentation plan

• Machine learning at Nordeus.

• Technology we use.

• Further results and future challenges.

Machine learning at Nordeus

Machine learning for games

By game/cohort: Trends

By user: Clustering, segmentation, playing styles, ...

By user: Churn prediction

CRM

By user: A/B tests

By user: recommend players, items, features, teammates, matchmaking, ...

What our team does

• Apply deep learning to improve gameplay in our games.

• Al for games

• Recently: instance segmentation for mapping frames from football videos to a 2D model of football pitch

Case study: Golden Boot

Goal of the game: score from a free kick, possibly rotating the ball to avoid the wall and the goalkeeper.

Case study: Golden Boot - our goal

Goal: Free kick in live match delivered to millions of players in real-time.

1. Live match: free kick

2. Our pipeline: 2D positions

3. Free kick in Golden Boot

Pipeline: player detection + clustering + positions

Free kick in a football game live on TV

Positions of players for Golden Boot

Goal: Instance segmentation

Source: http://cs231n.stanford.edu/

Source: http://cs231n.stanford.edu/

Technology we use

Michał Warchalski, Data Scientis

Solution: Mask R-CNN

Mask Region Convolutional Neural Network [K. He, G. Gkioxari, P. Dollár, R. Girshick '17] is a framework for object instance segmentation.

Source: https://github.com/matterport/Mask_RCNN

Architecture summary

Source: Mask R-CNN, Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick

Feature extraction + Region Proposal + Region classification + Mask prediction

Architecture summary

Feature extraction + Region Proposal + Region classification + Mask prediction

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Architecture: ResNet + RPN

• Feature extraction: use a CNN (ResNet) to extract features.

Source: https://engineering.matterport.com

Source: https://engineering.matterport.com

 RPN: Faster R-CNN [S. Ren, K. He, R. Girshick, J. Sun '15]: proposal regions with a neural net.

Source: Faster R-CNN: *Towards Real-Time Object Detection with Region Proposal Networks*, Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun

Source: https://medium.com/@smallfishbigsea

Feature extraction

Feature extraction + Region Proposal + Region classification + Mask prediction

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Feature extraction: pre-trained CNN

Source: First conv layer of trained AlexNet, http://cs231n.github.io/

Use initial layers of a CNN pre-trained for image classification in order to extract features useful in further stages.

Source: *Deep Residual Learning for Image Recognition*, Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

Region Proposal

Feature extraction + Region Proposal + Region classification + Mask prediction

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Region Proposal Network

Slide a small window over the feature map and predict rectangles of various scales and aspect ratios, classify background vs. foreground and regress (positive boxes according to IoU).

Good vs. bad bounding boxes

Region Proposal Network: Loss

• Total loss:

$$\mathcal{L} = \mathcal{L}_{cls} + \mathcal{L}_{box}$$

• Classification loss:

$$\mathcal{L}_{cls} = rac{1}{N_{cls}}\sum_i -p_i^*\log p_i - (1-p_i^*)\log(1-p_i)$$
 Regression loss:

$$\mathcal{L}_{box} = rac{\lambda}{N_{box}} \sum_i p_i^* L_1^{smooth}(t_i - t_i^*)$$

Architecture summary

Feature extraction + Region Proposal + Region classification + Mask prediction

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Architecture: Rol classification + Mask prediction

 Region of Interest classification. Apply a CNN to every proposed region and classify it.

Source: Fast R-CNN, https://arxiv.org/abs/1504.08083

 Mask prediction. Classify each pixel of the proposed region classified as K, as either K or not K.

Source: Mask R-CNN

Region of Interest classification

Feature extraction + Region Proposal + Region classification + Mask prediction

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Region of Interest classification

Feed the proposed region into a NN, classify it and correct the bounding box.

Region of Interest classification: Loss

• Total loss:

$$\mathcal{L} = \mathcal{L}_{cls} + \mathcal{L}_{box}$$

• Classification (softmax) loss, where ui is the true class label:

$$\mathcal{L}_{cls} = rac{1}{N_{cls}} \sum_i -\log p_{u_i}$$

• Regression loss:

$$\mathcal{L}_{box} = rac{1}{N_{box}} \sum_i \chi_{u_i \geq 1} L_1^{smooth}(t_i - t_i^*)$$

Mask prediction

Feature extraction + Region Proposal + Region classification + Mask prediction

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Mask prediction

Given region classified as K, per pixel classification object vs. non-object

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Mask prediction: Loss

• Loss:

$$\mathcal{L} = \mathcal{L}_{mask}$$

• Mask loss (average over such) for a mask of size m x m for some class K:

$$\mathcal{L}_{mask} = -rac{1}{m^2} \sum_{1 \leq i,j \leq m} y^*_{ij} \log y_{ij} + (1-y^*_{ij}) \log(1-y_{ij})$$

Object detection: timeline

Very quick progress over last few years!

- *Rich feature hierarchies for accurate object detection and semantic segmentation*, Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik '13
- Fast R-CNN, Ross Girshick '15
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ross Girshick '15
- Mask R-CNN, Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun '17

• You Only Look Once: Unified, Real-Time Object Detection, Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi '15

Further results and future challenges

Generative Adversarial Networks - GANs

Source: Progressive Growing of GANs for Improved Quality, Stability, and Variation, T. Karras, T. Aila, S. Laine, J. Lehtinen '17

GAN: ?

One of the following players was generated with a GAN. Which?

All of them were generated!

GAN in Golden Boot

Deep reinforcement learning

Source: https://medium.com/udacity

Deep learning for football video analysis

Michał Warchalski, Data Scientist

Face model generation

Source: Source: Photorealistic Facial Texture Inference Using Deep Neural Networks, S. Saito, L. Wei, L. Hu, K. Nagano, H. Li '16

Challenges

- Object detection
- Reinforcement learning
- GANs
- ...

We want to collaborate!

Contact: michalw@nordeus.com, milosmi@nordeus.com

Hvala na pažnji!

Michał Warchalski, Data Scientis