DeepMind

Graph Representation Learning for Algorithmic Reasoning

Petar Veličković

DL4G@WWW2020 21 April 2020

Neural networks

Algorithms

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.

Neural networks

- + Operate on **raw** inputs
- + Generalise on **noisy** conditions
- + Models reusable across tasks
- Require **big data**
- Unreliable when **extrapolating**
- Lack of interpretability

Algorithms

- + Trivially **strongly** generalise
- + **Compositional** (subroutines)
- + Guaranteed correctness
- + Interpretable operations
- Inputs must match **spec**
- Not **robust** to task variations

Neural networks

Algorithms

- + Operate
- + Genera
- + Models
- Require
- Unreliak
- Lack of

Is it possible to get the best of **both** worlds?

eralise outines) **less** ions **bec** riations

Neural networks

This talk!

Algorithms

- + Operate
- + Genera
- + Models
- Require
- Unreliak
- Lack of

Is it possible to get the best of **both** worlds?

eralise outines) **less** ions **bec** riations

Neural Graph-Algorithmic Reasoning

- <u>Can</u> neural nets robustly **reason** like algorithms?
- Algorithms manipulate (un)ordered sets of objects, and their relations.
 - \Rightarrow They operate over graphs.
 - Supervise graph neural networks on algorithm execution tasks!

• Call this approach **neural graph algorithm execution**.

• Popular GNN benchmark datasets often **unreliable**

Pitfalls of Graph Neural Network Evaluation

Oleksandr Shchur; Maximilian Mumme; Aleksandar Bojchevski, Stephan Günnemann Technical University of Munich, Germany {shchur,mumme,a.bojchevski,guennemann}@in.tum.de

On Graph Classification Networks, Datasets and Baselines

Enxhell Luzhnica^{*1} Ben Day^{*1} Pietro Lio¹

(a) CORA

	DATASETS				
MODEL	REDDIT ⁵	DD	COLLAB	Prot.	
PATCHYSAN	41.32	76.27	72.60	75.00	
GRAPHSAGE	42.24	75.42	68.25	70.48	
ECC	41.73	74.10	67.79	72.65	
Set2Set	43.49	78.12	71.75	74.29	
SortPool	41.82	79.37	73.76	75.54	
DiffPool-Det	46.18	75.47	82.13	75.62	
DiffPool-NoLP	46.65	79.98	75.63	77.42	
DiffPool	47.08	81.15	75.50	78.10	
GU-NET/SHGC	-	78.59	74.54	75.46	
MLP	40.96	80.22	74.00	75.74	
GCN(R)-MLP	36.15	78.61	75.38	76.28	
GCN-MLP	45.01	79.29	76.50	75.64	
K-SUM	47.16	79.02	77.00	75.82	
K-SUM-DECAY	43.87	79.11	74.14	75.82	
K-SUM-REINIT	46.77	75.97	77.20	75.46	

		Our experiments:				
Benchmarking GNNs	GCN	81.4 ± 0.4	$70.9\pm$	0.5	79.0 ± 0.4	Ł
U	GAT	83.3 ± 0.7	$72.6 \pm$		78.5 ± 0.3	
	FastGCN	79.8 ± 0.3	$68.8\pm$		77.4 ± 0.3	
Deputer CNN benchmark detects often unreliable	GIN	77.6 ± 1.1	$66.1 \pm$	1001011101010111	77.0 ± 1.2	
 Popular GNN benchmark datasets often unreliable 	LNet	$80.2\pm3.0^{\dagger}$	$67.3 \pm$		78.3 ± 0.6	2
 Complexity not very high 	AdaLNet	$81.9\pm1.9^{\dagger}$	70.6 ± 0	5 - 53 C	77.8 ± 0.7	
	DGI	82.5 ± 0.7	$71.6 \pm$		78.4 ± 0.7	
Simplifying Graph Convolutional Networks	SGC	81.0 ± 0.0	$71.9 \pm$	0.1	78.9 ± 0.0	1
		-				
	Setting	Model		Test	: F 1	
Felix Wu ^{*1} Tianyi Zhang ^{*1} Amauri Holanda de Souza Jr. ^{*12} Christopher Fifty ¹ Tao Yu ¹ Kilian Q. Weinberger ¹		GaAN		96.4	1	
		SAGE-me	ean	95.0)	
	Supervised	SAGE-LS		95.4		
		SAGE-GO	CN	93.0		
		FastGCN		93.7		
		GCN		00	M	
		SAGE-me	ean	89.7	7	
	Unsupervise	ed SAGE-LS	STM	90.7	7	
K-step Feature Propagation		SAGE-GO	CN	90.8	3	
$ar{\mathbf{X}} \leftarrow \mathbf{S}^K \mathbf{X}$		DGI		94.0)	
	NT T -	Random-	Init DGI	93.3	3	
$\hat{\tau}$	No Learnin	g SGC		94.9) 🕥	1
$\hat{\mathbf{Y}}_{ ext{SGC}} = ext{softmax}\left(\mathbf{S}^{K}\mathbf{X}\mathbf{\Theta} ight)$						

- Popular GNN benchmark datasets often unreliable
 - **Complexity** not very high
- Algorithms prove very **favourable**

100

80 (%)

60

40

20

0

8

20

40

60

Length of Test Sequences

Accuracy

Infinite data 0

Accuracy @

seq_len = 8

100.00%

99.14%

97.66%

Models

Modified transformer

Vanilla transformer

NEE

- Complex data manipulation Ο
- A clear hierarchy of models emerges! Ο

-NEE

80

Timestamp

- Popular GNN benchmark datasets often **unreliable**
 - Complexity not very high
- Algorithms prove very **favourable**
 - Infinite data
 - Complex data manipulation
 - A clear hierarchy of models emerges!
- A clearly specified **generating** function
 - No **noise** in the data
 - Enabling rigorous credit assignment

- Popular GNN benchmark datasets often unreliable
 - **Complexity** not very high
- Algorithms prove very **favourable**
 - Infinite data
 - Complex data manipulation
 - A clear hierarchy of models emerges!
- A clearly specified generating function
 - No **noise** in the data
 - Enabling rigorous **credit assignment**
- The world is propped-up on *polynomial-time algorithms*
 - Applicable to NP-hard problems (see e.g. Joshi, Laurent and Bresson, NeurIPS'19 GRL)

Strong generalisation

• Learning an *algorithm* is **not** learning input-output *mapping*!

(Graves et al., 2014)

Strong generalisation

- Learning an *algorithm* is **not** learning input-output *mapping*!
- Imitating individual operations enables strong generalisation.
 - Consider how humans devise algorithms "by hand".
 - Scales to much larger test graph sizes.

Table 1. Performance of different tasks on variable sizes of test examples (trained with examples of size 8)

Sizes	25	50	75	100
Selection sort	100.00	100.00	100.00	100.00
Merge sort	100.00	100.00	100.00	100.00
Shortest paths	100.00	100.00	100.00	100.00*

Strong generalisation

- Learning an *algorithm* is **not** learning input-output *mapping*!
- Imitating individual *operations* enables **strong** generalisation.
 - Consider how humans devise algorithms "by hand".
 - Scales to much larger test graph sizes.
- **Grounds** the GNN in the underlying algorithmic reasoning
 - Deep learning is about learning representations
 - Learn representations of manipulations!

Multi-task learning

- Learning representations of manipulations
 - \Rightarrow lots of potential for representational *reuse*.
 - Many algorithms share **subroutines**.

MS	$\operatorname{T-PRIM}(G, w, s)$	DIJ	KSTRA(G,w,s)
1	for each $u \in G.V$	1	for each $u \in G.V$
2	$u.key = \infty$	2	$u.key = \infty$
3	$u.\pi = \text{NIL}$	3	$u.\pi = \text{NIL}$
4	s.key = 0	4	s.key = 0
5	Q = G.V	5	Q = G.V
6	while $Q \neq \emptyset$	6	while $Q \neq \emptyset$
7	u = EXTRACT-MIN(Q)	7	u = EXTRACT-MIN(Q)
8	for each $v \in G.Adj[u]$	8	for each $v \in G.Adj[u]$
9	if $v \in Q$ and $w(u, v) < v.key$	9	if $u.key + w(u,v) < v.key$
10	DECREASE-KEY $(Q, v, w(u, v))$	10	DECREASE-KEY $(Q, v, u.key + w(u, v))$
11	$v.\pi = u$	11	$v.\pi = u$

Multi-task learning

- Learning representations of manipulations
 - \Rightarrow lots of potential for representational *reuse*.
 - Many algorithms share **subroutines**.
- Representations can positively **reinforce** one another!
 - Meta-representation of algorithms.
 - Plentiful opportunity for:
 - Multi-task learning
 - Meta-learning
 - Continual learning

with clearly defined task relations!

Multi-task learning

- Learning representations of manipulations
 - \Rightarrow lots of potential for representational *reuse*.
 - Many algorithms share **subroutines**.
- Representations can positively **reinforce** one another!
 - Meta-representation of algorithms.
 - Plentiful opportunity for:
 - Multi-task learning
 - Meta-learning
 - Continual learning

with clearly defined task relations!

• Output of *easier* algorithm can be used as *input* for a harder one.

Algorithm discovery

- Inspecting intermediate outputs of an algorithm can **decode** its behaviour!
- Opportunity for deriving **novel** algorithms, e.g.
 - Improved heuristics for *intractable* problems.
 - Optimising for GNN executors (e.g. GPU/TPU).

Algorithm discovery

- Inspecting intermediate outputs of an algorithm can **decode** its behaviour!
- Opportunity for deriving **novel** algorithms, e.g.
 - Improved heuristics for *intractable* problems.
 - Optimising for GNN executors (e.g. GPU/TPU).
- - My way into computer science :)

Sphere online judge CODEFORCES

Algorithm discovery

- Inspecting intermediate outputs of an algorithm can **decode** its behaviour!
- Opportunity for deriving **novel** algorithms, e.g.
 - Improved heuristics for *intractable* problems.
 - Optimising for GNN executors (e.g. GPU/TPU).
- - My way into computer science :)
- Conjecture: Can perform *soft subroutine reuse* from polynomial-time algorithms.

Programming language hierarchy

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020) WHAT CAN NEURAL NETWORKS REASON ABOUT? Algo-level

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

NEURAL EXECUTION OF GRAPH ALGORITHMS Step-level

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)

NEURAL EXECUTION ENGINES Unit-level

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)

- Learns an **algorithm** end-to-end only
- Strong theoretical link between **generalisation power** and **algorithmic alignment**
- GNNs align well with dynamic programming!

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

- Supervises on atomic **steps** of an algorithm
- Out-of-distribution testing of various GNNs
- Multi-task learning + maximisation aggregators generalise stronger!

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)

- Learns to execute tiny **operations**, then composes them
- Binary encoding and conditional masking
- Achieves *perfect* strong generalisation!

Algo-level

Step-level

Unit-level

NEURAL EXECUTION ENGINES Unit-level

What Can Neural Networks Reason About?

- Which networks are best suited for certain types of reasoning?
 - **Theorem**: better *structural alignment* implies better *generalisation*!
 - GNNs ~ dynamic programming

Answer[k][i] = DP-Update({Answer[k-1][j], j = 1...n})
$$h_s^{(k)} = \sum_{t \in S} \text{MLP}_1^{(k)} \left(h_s^{(k-1)}, h_t^{(k-1)}\right)$$

Architectures under study

MLPs

~ feature extraction

$$y = \mathrm{MLP}(||_{s \in S} X_s)$$

$$y = \mathrm{MLP}_2\left(\sum_{s \in S} \mathrm{MLP}_1(X_s)\right)$$

GNNs

~ (pairwise) relations

$$h_s^{(k)} = \sum_{t \in S} \mathrm{MLP}_1^{(k)} \left(h_s^{(k-1)}, h_t^{(k-1)} \right)$$
$$y = \mathrm{MLP}_2 \left(\sum_{s \in S} h_s^{(K)} \right)$$

Empirical results

Summary statistics What is the maximum value difference among treasures?

Relational argmax What are the colors of the furthest pair of objects?

Dynamic programming What is the cost to defeat monster X by following the optimal path?

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020) WHAT CAN NEURAL NETWORKS REASON ABOUT? Algo-level

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

NEURAL EXECUTION OF GRAPH ALGORITHMS Step-level

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)

NEURAL EXECUTION ENGINES Unit-level

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Neural Execution of Graph Algorithms

Supervise on appropriate output values at every step.

Bellman-Ford algorithm

Message-passing neural network

Components of the executor

• Encoder network*
$$ec{z}_i^{(t)} = f_A(ec{x}_i^{(t)},ec{h}_i^{(t-1)})$$

• Processor network
$$\mathbf{H}^{(t)} = P(\mathbf{Z}^{(t)}, \mathbf{E}^{(t)})$$

• Decoder network*
$$ec{y}_i^{(t)} = g_A(ec{z}_i^{(t)},ec{h}_i^{(t)})$$

• Termination network*
$$au^{(t)} = \sigma(T_A(\mathbf{H}^{(t)}))$$

• Repeat as long as $au^{(t)} > 0.5$

*algorithm-specific

• Hypothesis: MPNN-max is a highly suitable processor

(Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

Evaluation

- Evaluate on *parallel* and *sequential* algorithms.
 - Parallel: *Reachability* (**BFS**), *Shortest paths* (**Bellman-Ford**)
 - Sequential: *Minimal spanning trees* (**Prim**)
 - Explicit inductive bias on sequentiality (learnable mask!)
- Generate graphs from a wide variety of distributions:
 - Ladder, Grid, Tree, 4-Caveman, 4-Community, Erdős-Rényi, Barabási-Albert
 - Attach random-valued weights to each edge
- Study the "human-programmer" perspective: test generalisation from small graphs (20 nodes) to larger graphs (50/100 nodes).
- Learn to execute BFS and Bellman-Ford with **same** processor!

Evaluation: Shortest paths (+ Reachability)

	Predecessor (mean step accuracy / last-step accuracy)				
Model	20 nodes	50 nodes	100 nodes		
LSTM (Hochreiter & Schmidhuber, 1997)	47.20% / 47.04%	36.34% / 35.24%	27.59% / 27.31%		
GAT* (Veličković et al., 2018)	64.77% / 60.37%	52.20% / 49.71%	47.23% / 44.90%		
GAT-full* (Vaswani et al., 2017)	67.31% / 63.99%	50.54% / 48.51%	43.12% / 41.80%		
MPNN-mean (Gilmer et al., 2017)	93.83% / 93.20%	58.60% / 58.02%	44.24% / 43.93%		
MPNN-sum (Gilmer et al., 2017)	82.46% / 80.49%	54.78% / 52.06%	37.97% / 37.32%		
MPNN-max (Gilmer et al., 2017)	97.13% / 96.84%	94.71% / 93.88%	90.91% / 88.79%		
MPNN-max (<i>curriculum</i>)	95.88% / 95.54%	91.00% / 88.74%	84.18% / 83.16%		
MPNN-max (<i>no-reach</i>)	82.40% / 78.29%	78.79% / 77.53%	81.04% / 81.06%		
MPNN-max (<i>no-algo</i>)	78.97% / 95.56%	83.82% / 85.87%	79.77% / 78.84%		

Trained on 20-node graphs!

Trained without reachability objective

Trained without step-wise supervision

Evaluation: Sequential execution

	Accuracy (next MST node / MST predecessor)			
Model	20 nodes	50 nodes	100 nodes	
LSTM (Hochreiter & Schmidhuber, 1997)	11.29% / 52.81%	3.54% / 47.74%	2.66% / 40.89%	
GAT* (Veličković et al., 2018) GAT-full* (Vaswani et al., 2017)	27.94% / 61.74% 29.94% / 64.27%	22.11% / 58.66% 18.91% / 53.34%	10.97% / 53.80% 14.83% / 51.49%	
MPNN-mean (Gilmer et al., 2017) MPNN-sum (Gilmer et al., 2017) MPNN-max (Gilmer et al., 2017)	90.56% / 93.63% 48.05% / 77.41% 87.85% / 93.23%	52.23% / 88.97% 24.40% / 61.83% 63.89% / 91.14%	20.63% / 80.50% 31.60% / 43.98% 41.37% / 90.02%	
MPNN-max (no-algo)	<i>— / 71.02%</i>	<i>— / 49.83%</i>	— / 23.61%	

The sequential inductive bias is very **helpful**!

(Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020) WHAT CAN NEURAL NETWORKS REASON ABOUT? Algo-level (Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)

NEURAL EXECUTION OF GRAPH ALGORITHMS Step-level

(Yan, Swersky, Koutra, Ranganathan and Hashemi. 2020)

NEURAL EXECUTION ENGINES Unit-level

Neural Execution Engines

- Teach a neural net to **strongly** perform *tiny* tasks (e.g. sum, product, argmin)
 - **Compose** tasks to specify algorithms
 - The building blocks must stay robust with long/OOD rollouts!

Learning to **selection** sort by composing **argmin**

selection_sort(data):
 sorted_list = []
 while (len(data) > 0):

min_index, *min_element* = **find_min**(*data*)

data.delete(min_index)
sorted_list.append(min_element)
return sorted_list

find_min(data):

```
min_element = -1
min_index = -1
for index, element in enumerate(data):
if (element < min_element):
    min_element = element
    min_index = index</pre>
```

return [min_index, min_element]

Learning to selection sort by composing argmin

Composing subroutines (Dijkstra)

shortest_path(graph, source_node, shortest_path):
 dists = []
 nodes = []
 anchor_node = source_node
 node_list = graph.get_nodes()

while node_list:

shortest_path = min(possible_paths, shortest_path)

anchor_node, min_dist = min(shortest_path)

node_list.delete(anchor_node)
nodes.append(anchor_node)
dists.append(min_dist)

return dists, nodes

Recursive subroutines (Merge sort)

merge_sort(data, start, end):
 if (start < end):
 mid = (start + end) / 2</pre>

merge_sort(data, start, mid)
merge_sort(data, mid+1, end)

merge(data, start, mid, end)

Table 1. Performance of different tasks on variable sizes of test examples (trained with examples of size 8)

Sizes Accuracy	25	50	75	100
Selection sort	100.00	100.00	100.00	100.00
Merge sort	100.00	100.00	100.00	100.00
Shortest paths	100.00	100.00	100.00	100.00*

partially_sorted_data learned_mask

Conclusions

- Algorithmic reasoning is an exciting novel area for graph representation learning!
 - Three concurrent works explore it at different levels:
 - Algo-level (Xu, Li, Zhang, Du, Kawarabayashi and Jegelka. ICLR 2020)
 - Step-level (Veličković, Ying, Padovano, Hadsell and Blundell. ICLR 2020)
 - Unit-level (Yan, Swersky, Koutra, Raganathan and Hashemi. 2020)
- Many questions left to be answered, at *all* levels of the hierarchy!
 - o <Your contribution here/>

DeepMind

Thank you!

Questions?

petarv@google.com | https://petar-v.com

In collaboration with Charles Blundell, Raia Hadsell, Rex Ying, Matilde Padovano, Lars Buesing, Matt Overlan, Razvan Pascanu and Oriol Vinyals