MACHINE LEARNING AND APPLICATIONS GROUP

Reinforcement learning (solving unknown MDPs)

Predrag Vasilić

- We are still considering a Markov decision process (MDP)
- What if transitions P_{sa}(s') and rewards R(s) (or R(s, a, s')) are unknown?
- We still want to learn the optimal policy!!!
- We need to learn online!

Offline solution (MDP)

Online learning (RL)

Online learning

- Agent learns from success and failure, from reward and punishment
- $P_{sa}(s')$ unknown we don't know the results of our actions
- R(s) unknown until we reach s

How to learn?

- We need to **explore** the problem
- With time, we start to **exploit** actions from our experience
- Compromise
- **Regret** is inevitable we will certainly make errors

Model based learning

- We start by choosing actions randomly
- How can we estimate transitions?

$$\widehat{P_{sa}}(s') = \widehat{P}(s'|s,a) = \frac{\#in \ s \ applied \ a \ and \ got \ to \ s'}{\#in \ s \ applied \ a}$$
• If we have never chosen $a \ in \ s$, we can use $\widehat{P_{sa}}(s') = \frac{1}{N_s}$

Policy iteration with learning

- Initialize π randomly
- Repeat {

}

- (a) Execute π in the MDP for some number of trials
- (b) Using the accumulated experience in the MDP, update our estimates for $\widehat{P_{sa}}(s')$
- (c) Estimate V $^{\pi}$
- (d) Update π to be the greedy policy with respect to V $^{\pi}$

Model free learning

- Is it necessary to learn the transition model $(P_{sa}(s'))$?
- Example: average age of MLA participant

Unknown P(A): "Model Based"

$$\hat{P}(a) = \frac{\operatorname{num}(a)}{N}$$

 $E[A] \approx \sum_{a} \hat{P}(a) \cdot a$

Example taken from [3]

Example taken from [3]

Direct utility estimation

- We have a fixed policy π !!!
- This is called Passive learning
- DUE:
 - Whenever you are in *s*, remember the final the total reward: $V^{(i)}(s) = R(s) + \gamma R\left(s_1^{(i)}\right) + \gamma^2 R\left(s_2^{(i)}\right) + \cdots$

• We get $\hat{V}^{\pi}(s)$ by averaging over $V^{(i)}(s)$:

$$\hat{V}^{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} V^{(i)}(s)$$

Direct utility estimation

- It misses important information: **utilities of states are not independent**
- Some state is likely to have high utility, if it's neighbors have high utilities!

0.64 →	0.74 ▶	0.85 →	1.00
• 0.57		• 0.57	-1.00
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28

Temporal-difference learning(TD)

- We keep the current estimation of $\hat{V}^{\pi}(s)$
- Whenever we end up in *s*, we compute: $v(s) = R(s) + \gamma \hat{V}^{\pi}(s')$
- We apply the update to $V^{\pi}(s)$: $\hat{V}^{\pi}(s) \leftarrow \hat{V}^{\pi}(s) + \alpha [v(s) - \hat{V}^{\pi}(s)], \quad \alpha \in (0,1)$
- Mean of $\hat{V}^{\pi}(s)$ converges to $V^{\pi}(s)$

Temporal-difference learning

- $\hat{V}^{\pi}(s) = (1 \alpha)\hat{V}^{\pi}(s) + \alpha v(s)$
- Exponential moving average
- The running interpolation update: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
- Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (α) can give converging averages

Active Reinforcement Learning

- So far, we used TD to learn utilities for a fixed policy π
- We now want to learn the optimal policy $\pi^{\,*}$

Q-values

 Q(s, a)(Q-value): The total expected reward if we apply action a in state s, and from there we act optimally

$$Q^*(s,a) = R(s) + \gamma \sum_{s'} P_{sa}(s')V^*(s')$$

•
$$V^*(s) = \max_a Q^*(s, a)$$

$$V^{*}(s) = R(s) + \gamma \max_{a} \sum_{s'} P_{sa}(s') V^{*}(s')$$

•
$$\pi^*(s) = \operatorname*{argmax}_a Q^*(s, a)$$

• $Q^*(s, a) = R(s) + \gamma \sum_{s'} P_{sa}(s') \max_{a'} Q^*(s', a')$

Q-value iteration

- Analog with Value iteration
- MDP model is known
- Algorithm:
 - Start with $Q_0(s, a) = 0$ for each s, a

• For
$$t = 1, 2, ...$$
 until convergence
 $Q_t(s, a) = R(s) + \gamma \sum_{s'} P_{sa}(s') \max_{a'} Q_{t-1}(s', a'), \quad \forall s, a$

 $V_t(s) = R(s) + \gamma \max_{a} \sum_{i} P_{sa}(s') V_{t-1}(s')$

- Q_t converges to Q^*
- We can compute π^* and V^*

Q-learning

- For unknown models TD with Q-values
- Q-learning algorithm:
 - Receive a new sample (s, a, s')
 - Consider your old estimate: Q(s, a)
 - Compute the new sample estimate:

$$q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$

- Update the Q-value with running average: $Q(s,a) = Q(s,a) + \alpha [q(s,a) - Q(s,a)]$
- Q-learning converges to Q^* , if we explore enough !!!

Exploration vs. Exploitation

How to explore?

- How to choose actions in states?
- *ε*-greedy exploration:
 - With probability ε , we choose actions randomly
 - Otherwise, we use our current policy estimation ($\operatorname{argmax} Q(s, a)$)

a

• Start with high value of ε and decrease it with time

How to explore?

- Exploration function
- N(s', a') is the number of times we have selected action a' in state s', and we define:

$$f(s', a') = Q(s', a') + \frac{k}{N(s', a')}$$

• Sample for Q-learning is now:

$$q(s,a) = R(s) + \gamma \max_{a'} f(s',a')$$

Discretization

- Methods defined so far supposed discrete states
- If states are continuous-we can discretize them
- Problem curse of dimensionality
- Works for states with small dimensionality(not grater than 5)

- Library: https://github.com/openai/gym (OpenAI Gym)
- Simulator: "CartPole-v1"
- State variables:
 - $x \in [-2.4, 2.4]$ position
 - $\dot{x} \in [-\infty, \infty]$ velocity
 - $\theta \in [-12^{\circ}, 12^{\circ}]$ –angular distance from the vertical position
 - $\dot{\theta} \in [-\infty, \infty]$ angular velocity
- If any variable goes out of range, the episode ends
- If the variables are in their range for 500 steps (T=0.02s), the episode ends
- Two available actions on each step: apply force to the left or right
- Each step has a living reward of +1, so do the terminal states

- Can we apply temporal difference Q-learning?
- We could discretize the state space:
 - $x: [-\infty, 0.8), [-0.8, 0.8), [0.8, \infty)$
 - \dot{x} : $[-\infty, 0.5), [-0.5, 0.5), [0.5, \infty)$
 - θ : $[-\infty, -8)^{\circ}$, $[-8, -4)^{\circ}$, $[-4, 0)^{\circ}$, $[0, 4)^{\circ}$, $[4, 8)^{\circ}$, $[8, \infty)^{\circ}$
 - $\dot{\theta}$: $[-\infty, -30)^{\circ}/s$, $[-30, -15)^{\circ}, [-15, 0)^{\circ}, [0, 15)^{\circ}, [15, 30)^{\circ}, [30, \infty)^{\circ}$
- Problem curse of dimensionality
- Usually works for states with small dimensionality(some authors say to use it with ≤ 5 dimensions)

- Adaptive exploration rate ε
- Adaptive learning rate α

D. (Google Drive (Vazi		<pre>a = np.argmax(self.Q estimation[self.discrete :</pre>
nal Libraries		s, reward, done, info = env.step(a) # Apply th
		if done:
		# The terminal state
		if plot:
		rewards[i_episode] = t + 1
		print ("Episode finished after [] <u>simesteps</u>
		break
		if render:
		time.sleep(1.0 / 60) # This step-time was
		if plot:
		plt.plot(rewards)
		plt.title("Reward")
		plt.xlabel("Episodes")
		plt.show()
	Patt	me:

_discretization

C:\Users\Nikola\Anaconda3\python.exe "D:/Google Drive/Vazni podaci/Studiranje/Poster stud

Approximate Q-learning

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
- Instead, we want to generalize

Parts taken from [3]

Example - Pacman

Let's say we discover through experience that this state is bad:

In naive q-learning, we know nothing about this state:

Or even this one!

Feature-Based Representations

- Describe a state using a vector of features (properties)
- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:
 - 1/Distance to closest ghost
 - 1/Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?

Aproximate Q-learning

- We approximate Q-value with a linear function of features: $Q(s,a) = \theta_1 \phi_1(s,a) + \theta_2 \phi_2(s,a) + \dots + \theta_n \phi_n(s,a) = \theta^T \phi(s,a)$
- Aproximate Q-learning algorithm:
 - Initialize *θ*=0

Repeat{

- Receive a new sample (s, a, s')
- Compute the new sample estimate:

$$q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$

• Update the weights: $\theta_j = \theta_j + \alpha [q(s,a) - Q(s,a)]\phi_j(s,a), \qquad j = 1,2,...,n$ } • $\pi^*(s) = \operatorname*{argmax}_a Q(s,a) = \operatorname*{argmax}_a \theta^T \phi(s,a)$

Example - Pacman

- Fetures for example:
 - 1/'closest food'
 - '# of ghosts 1 step away'
 - 'eats food'
 - 'bias'
 - 1/'closest scared ghost'
 - 1/'closest active ghost'

Example-Pacman – first four features training

(C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Documents>cd C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML_seminar\prosao_testove_23_1_2018

(C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML seminar\prosao testove 23 1 2018>python pacman.py -p ApproximateQAgent -a ext eginning 5 episodes of Training acman died! Score: -172 acman died! Score: -387 (C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML seminar\prosao testove 23 1 2018>python pacman.py -p ApproximateQAgent -a ext Beginning 5 episodes of Training acman died! Score: -156 acman died! Score: -189 acman emerges victorious! Score: 975 acman emerges victorious! Score: 970 Pacman emerges victorious! Score: 983 raining Done (turning off epsilon and alpha) 'closest-food': -0.08456937804251642, 'bias': 47.78197565415671, '#-of-ghosts-1-step-away': -19.839258573293158, 'eats-food': 68.06789429816786} (C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML_seminar\prosao_testove_23_1_2018>python_pacman.py -p ApproximateQAgent -a ext Beginning 5 episodes of Training Pacman emerges victorious! Score: 981 (C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML seminar\prosao testove 23 1 2018>python pacman.py -p ApproximateQAgent -a ext Beginning 5 episodes of Training (C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML seminar\prosao testove 23 1 2018>python pacman.py -p ApproximateQAgent -a ext Beginning 5 episodes of Training acman died! Score: -303 acman emerges victorious! Score: 982 acman emerges victorious! Score: 946 acman died! Score: -256 acman emerges victorious! Score: 981 raining Done (turning off epsilon and alpha) 'closest-food': -0.46887783994894944, 'bias': 42.48683700913223, '#-of-ghosts-1-step-away': -20.057244137859165, 'eats-food': 63.73668004160507}

(C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML_seminar\prosao_testove_23_1_2018>python pacman.py -p ApproximateQAgent -a ext

Example-Pacman – all six features after training

🗠 C//WINDOWS/System32/cmd.exe - python_pacman.py -p ApproximateQAgent -a extractor=SimpleExtractor -x 150 -n 260 -i mediumClassic

(C:\Users\korisnik\Anaconda3\envs\py27) C:\Users\korisnik\Google Drive\Sinhronizacija\SKS\ML_seminar\reinforcement_stvarne_distance_obuca\ sic Beginning 150 episodes of Training

RTraceback (most recent call last): File "pacman.py", line 682, in <module> runGames(**args)

File "pacman.py", line 648, in runGames

game.run()

ilo "C:\Uconc)konicnik)Googlo Dniwo)finbnonizacija)fKf)WL cominan)noinfoncomont ctwanno dictanco obucawanio)gamo nw" lino 734 in nun

Questions?

References

- [1] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach 3rd edition, Prentice Hall, 2009.
- [2] Andrew Ng, John Duchi, "Machine Learning Lecture notes"
- [3] UC Berkeley: CS188 Intro to AI, lecture slides http://ai.berkeley.edu (last visited: 11.03.2018)
- [4]Faculty of Electrical Engineering, University of Belgrade: Statistička klasifikacija signala, materials from class, <u>http://automatika.etf.bg.ac.rs/sr/13m051sks</u> (last visited: 11.03.2018)

THANK YOU