

Object Detection

Machine Learning and Applications Group, 2018.

Uroš Stegić

urosstegic@gmx.com

TRADITIONAL COMPUTER VISION

General Overview Convolution Operator Filters Convolutions Over Volume

Description

- Process & analyze visual signal
- Extract information from visual signal
- Perform on raw signal (pixel intensities values)

Convolutional Neural Networks

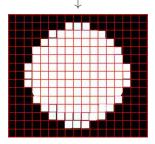
Object Detection

Enhance Intuition

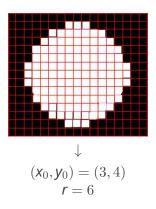
Computer Graphics

$$(x_0, y_0) = (3, 4)$$

 $r = 6$



Computer Vision



Convolutional Neural Networks

Object Detection

Tasks in Computer Vision

- Object Recognition
- Image Retrieval
- Object Detection
- OCR
- Pose Estimation

- Tracking
- Scene Reconstruction
- Optical Flow
- Semantic Segmentation
- Image Reconstuction

Convolutional Neural Networks

Object Detection

Tasks in Computer Vision

Object Recognition

- Image Retrieval
- Object Detection
- OCR

Pose Estimation

- Tracking
- Scene Reconstruction
- Optical Flow
- Semantic Segmentation
- Image Reconstuction

Convolutional Neural Networks

Object Detection

Convolution Operator - Definition

Definition

Let $A, B \in \mathcal{D} \subseteq \mathbb{R}^{n \times n}$. Convolution operator, denoted as * maps the space $\mathcal{D} \times \mathcal{D}$ to a field of real numbers and is defined as follows:

$$A * B = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} B_{ij}$$

Convolutional Neural Networks

Object Detection

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Convolutional Neural Networks

Object Detection

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

Convolutional Neural Networks

Object Detection

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

Convolutional Neural Networks

Object Detection

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

Convolutional Neural Networks

Object Detection

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

Convolutional Neural Networks

Object Detection

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 2 * 1 + 4 * 1 + 6 * 1 + 8 * 1 = 20$$

Filters

[211	39	200	102	174	25	90	144]					
138	44	184	110	193	30	92	136	*	$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \\ 1 \end{array}$	٦٦	
151	73	190	114	189	41	105	128					
129	101	123	181	201	169	117	191				$\begin{bmatrix} 1\\0 \end{bmatrix}$	
140	122	153	231	209	157	124	113					
221	115	77	244	198	149	156	247					

Convolutional Neural Networks

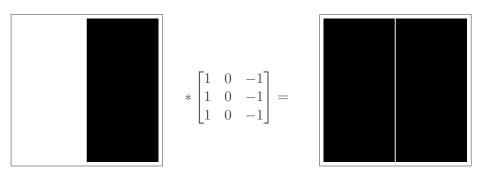
Filters - Examples

- Vertical Edge Extractor
- Horizontal Edge Extractor
- Sobel filter
- Sharpen
- Gaussian Blur

Convolutional Neural Networks

Object Detection

Filters - Edge Extractor



Convolutional Neural Networks

Object Detection

Filters - Edge Extractor

$$*\begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} =$$

Convolutional Neural Networks

Object Detection

Filters - Sobel

$$* \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} =$$

Convolutional Neural Networks

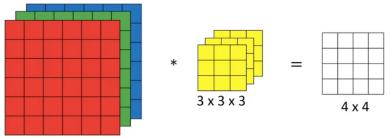
Object Detection

Filters - Gaussian Blur

Convolutional Neural Networks

Object Detection

Multiple Input Channels



6 x 6 x 3

Figure: Convolution of multichannel image

Convolutional Neural Networks

Object Detection

Multiple Filters

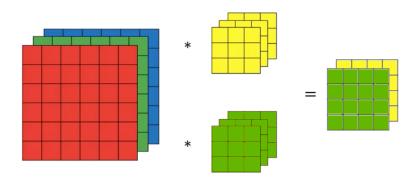


Figure: Convolution of multichannel image with two filters

CONVOLUTIONAL NEURAL NETWORKS

Parameter Learning Basic CNNs Residual Networks Inception Networks

Convolutional Neural Networks

Basic Concepts

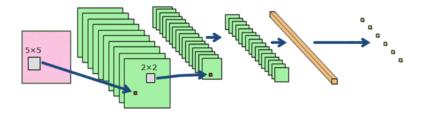


Figure: Convolutional layers stacked

Convolutional Neural Networks

Object Detection

Basic Concepts - Takeaway

- Image Classification
- Parameters (filters) Learning [LBD⁺89]
- Weight Sharing
- Feature Extraction

Convolutional Neural Networks

Object Detection

Basic Concepts - Feature Abstractions

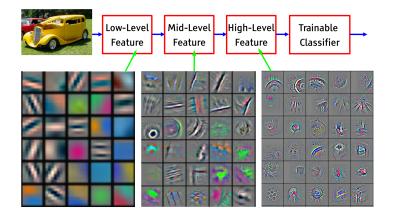


Figure: Feature Visualization [ZF13]

Convolutional Neural Networks

Object Detection

Basic Concepts - Pooling Layers

Sampling important Features

- Reduce Computation Time
- Make Features Robust

Convolutional Neural Networks

Object Detection

Basic Concepts - Pooling Layers (Example)

Pooling Layer - Max Pooling

$$\begin{bmatrix} 9 & 2 & 4 & 1 \\ 3 & 1 & 8 & 2 \\ 4 & 5 & 9 & 2 \\ 5 & 6 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 9 & 8 \\ 6 & 9 \end{bmatrix}$$

Convolutional Neural Networks

Object Detection

Basic Concepts - Architecture

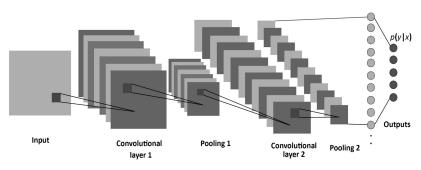


Figure: Convolutional Neural Network - Example

Convolutional Neural Networks

Object Detection

CNN Architecture - Lenet-5

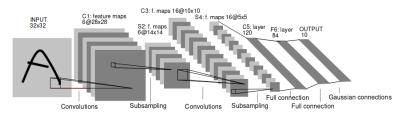


Figure: Lenet-5 Architecture [LBBH98]

Convolutional Neural Networks

Object Detection

CNN Architecture - VGG

Figure: VGG Architecture

Convolutional Neural Networks

Object Detection

CNN Architecture - AlexNet

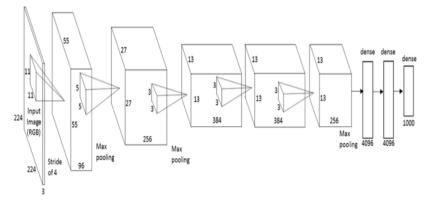


Figure: AlexNet Architecture [KSH12]

Convolutional Neural Networks

CNN - Problems

- Vanishing Gradient
- Exploding Gradient
- Computational Complexity

Convolutional Neural Networks

Object Detection

Residual Block

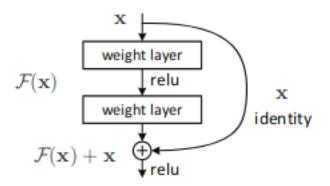


Figure: Residual Block (Skip Connection) [HZRS15]

Convolutional Neural Networks

Object Detection

Residual Network

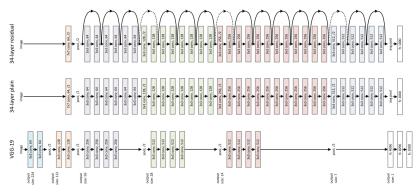


Figure: CNN Architecture - ResNet-34 [HZRS15]

Convolutional Neural Networks

Object Detection

1x1 Convolution

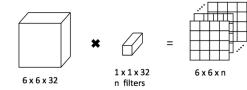


Figure: 1x1 Convolution [LCY13]

Convolutional Neural Networks

Object Detection

Inception Module - Idea

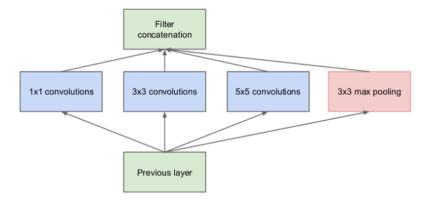


Figure: Inception Module Naive Version [SLJ+14]

Convolutional Neural Networks

Object Detection

Inception Module - Redone

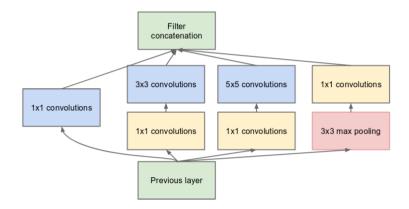


Figure: Inception Module With Dimension Reduction [SLJ+14]

Convolutional Neural Networks

Inception Network

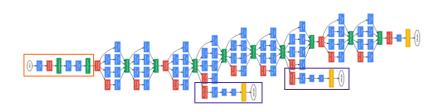


Figure: Inception Network (GoogLeNet) [SLJ+14]

OBJECT DETECTION

Task Outline YOLO RCNN Family Other Influental Models Speed/Accuracy Trade-Off

Convolutional Neural Networks

Visualizing the Task

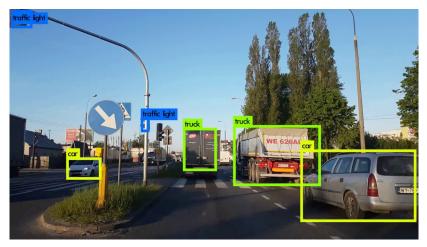


Figure: Object Detection Task

Convolutional Neural Networks

Understanding the Bounding Box Error

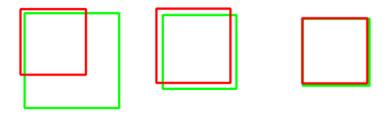


Figure: Bounding Box Missmatch

Convolutional Neural Networks

Defining the IoU

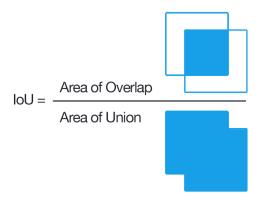


Figure: Intersection over Union

Convolutional Neural Networks

Gaining Intuition on IoU

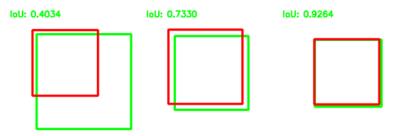


Figure: Intersection over Union - Example

Convolutional Neural Networks

Similar Bounding Boxes Problem

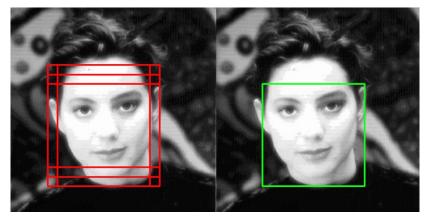


Figure: Elimination of Multiple Bounding Boxes

Convolutional Neural Networks

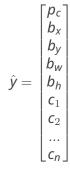
Non-Maximum Suppression

- Threshold every bounding box
- Sort bounding boxes by detection probability in decresing order
- For each bounding box b_i remove all bounding boxes $b_j (j \neq i)$ such that $IoU(b_i, b_j) \ge t$ for some fixed t

Convolutional Neural Networks

YOLO - Introduction

Figure: Grid for YOLO



⁰You Only Look Once: Unified, Real-Time Object Detection [RDGF15]

Convolutional Neural Networks

Limitations (already?)

Problem: Multiple objects centered in same cell

Convolutional Neural Networks

Anchor Boxes

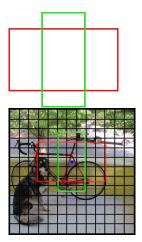
- Choose a number of anchors (predefined bboxes)
- Select a ratio (width and height) for each of them
- Modify the output to include this anchors

· · · ·

Profit

Convolutional Neural Networks

Anchor Boxes - Example



$$\hat{\mathbf{y}_{1}} = \begin{bmatrix} p_{c1} \\ b_{x1} \\ b_{y1} \\ b_{w1} \\ b_{h1} \\ c_{11} \\ \cdots \\ c_{n1} \end{bmatrix}, \quad \hat{\mathbf{y}_{2}} = \begin{bmatrix} p_{c2} \\ b_{x2} \\ b_{y2} \\ b_{w2} \\ b_{h2} \\ c_{12} \\ \cdots \\ c_{n2} \end{bmatrix}, \quad \hat{\mathbf{y}} = \begin{bmatrix} \hat{\mathbf{y}_{1}} \\ \hat{\mathbf{y}_{2}} \end{bmatrix}$$

Convolutional Neural Networks

YOLO - Loss Fucntion

$$\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \lambda_{coord} \sum_{i=0}^{s^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} [(\mathbf{x}_i - \hat{\mathbf{x}}_i)^2 + (\mathbf{y}_i - \hat{\mathbf{y}}_i)^2]$$

$$+ \lambda_{coord} \sum_{i=0}^{s^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} [(\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2]$$

$$+ \sum_{i=0}^{s^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (C_i - \hat{C}_i)^2$$

$$+ \lambda_{noobj} \sum_{i=0}^{s^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (C_i - \hat{C}_i)^2$$

$$+ \sum_{i=0}^{s^2} \mathbb{1}_i^{obj} \sum_{c \in classes} (p_i(c) - \hat{p}_i(c))^2$$

Convolutional Neural Networks

Object Detection

Region Based Approach

- Propose Regions of Interest
- Classify each RoI
- Regress Bounding Box Coordinates

Convolutional Neural Networks

Object Detection

Region Models

- Regions with CNN (R-CNN) [GDDM13]
- Fast R-CNN [Gir15]
- Faster R-CNN [RHGS15]
- Mask R-CNN [HGDG17]

Convolutional Neural Networks

Object Detection

Region Proposals - Selective Search

Figure: Selective Search Algorithm Visualized

Convolutional Neural Networks

R-CNN

R-CNN: Regions with CNN features

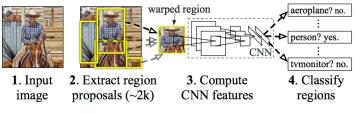


Figure: R-CNN Pipeline

Convolutional Neural Networks

Object Detection

Fast R-CNN

- Convolution Based Sliding Window
- ROI Pooling
- Softmax Classification

Convolutional Neural Networks

Object Detection

Fast R-CNN - Sliding Window

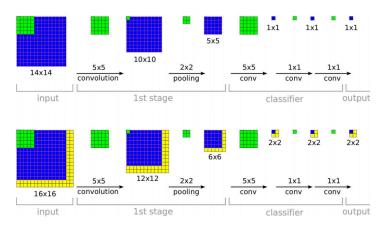


Figure: Sliding Window - CNN Implementation

Convolutional Neural Networks

Object Detection

Fast R-CNN - Visualized

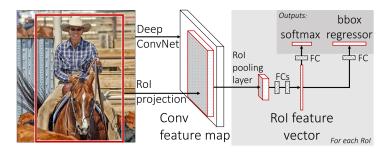


Figure: Fast R-CNN Pipeline

Convolutional Neural Networks

Fast R-CNN - Loss

$$\mathcal{L}(\boldsymbol{p}, \boldsymbol{u}, \boldsymbol{t}^{\boldsymbol{u}}, \boldsymbol{v}) = L_{\textit{cls}}(\boldsymbol{p}, \boldsymbol{u}) + \lambda[\boldsymbol{u} \geq 1]L_{\textit{loc}}(\boldsymbol{t}^{\boldsymbol{u}}, \boldsymbol{v})$$

$$\begin{aligned} \mathsf{L}_{cls}(p, u) &= -\log p_u \\ \mathsf{L}_{loc}(t^u, v) &= \sum_{i \in \{x, y, w, h\}} smooth_{L_1}(t^u_i - v_i) \\ \mathrm{smooth}_{L_1}(x) &= \begin{cases} 0.5x^2, & \text{if } x \leq 1 \\ x - 0.5, & \text{otherwise} \end{cases} \end{aligned}$$

Convolutional Neural Networks

Faster R-CNN

- Bottleneck: Region Proposals by Selective Search (2s)
- Solution: Region Proposals by CNN (0.01s)

Convolutional Neural Networks

Object Detection

Region Proposal Network

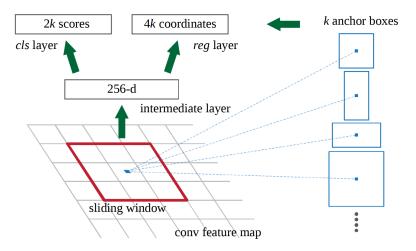


Figure: Region Proposal Network for Faster R-CNN

Convolutional Neural Networks

RPN - Loss

$$\mathcal{L}(p_i, t_i) = \frac{1}{N_{cls}} \sum_{i} \mathcal{L}_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* \mathcal{L}_{reg}(t_i, t_i^*)$$

Convolutional Neural Networks

Object Detection

Faster R-CNN - Architecture

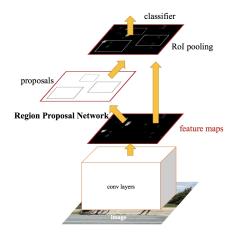


Figure: Model Scheme of Faster R-CNN

Convolutional Neural Networks

Object Detection

Mask R-CNN

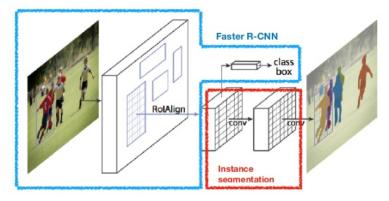


Figure: Model Scheme of Faster R-CNN

Convolutional Neural Networks

Object Detection

Other Influential Models

- RetinaNet (Focal Loss) [LGG⁺17]
- Single Shot Detector [LAE+15]

Convolutional Neural Networks

Object Detection

RetinaNet

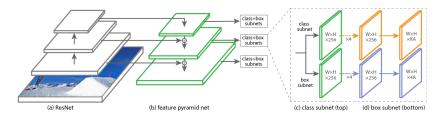


Figure: Retina Net - Overview

Convolutional Neural Networks

Speed vs. Precision

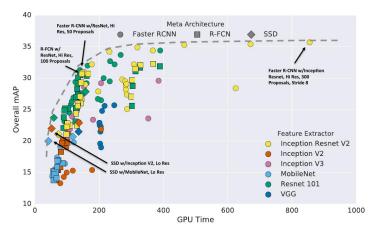


Figure: GPU Time vs. Precision [HRS+16]

Convolutional Neural Networks

Object Detection

Lecture Pronouncement

CONVERGENCE

References I

- Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, *Rich feature hierarchies for accurate object detection and semantic segmentation*, CoRR **abs/1311.2524** (2013).
- Ross B. Girshick, Fast R-CNN, CoRR abs/1504.08083 (2015).
- Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick, *Mask R-CNN*, CoRR **abs/1703.06870** (2017).

References II

- Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin Murphy, *Speed/accuracy trade-offs for modern convolutional object detectors*, CoRR **abs/1611.10012** (2016).
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep residual learning for image recognition, CoRR abs/1512.03385 (2015).

References III

- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.), Curran Associates, Inc., 2012, pp. 1097–1105.
- Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg, SSD: single shot multibox detector, CoRR abs/1512.02325 (2015).
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, *Gradient-based learning applied to document recognition*, IEEE (1998), 2278–2324.

References IV

- Yann Lecun, Bernhard Boser, John Denker, Don Henderson, R E. Howard, W.E. Hubbard, and Larry Jackel, *Backpropagation applied to handwritten zip code recognition*, Neural Computation **1** (1989), 541–551.
- Min Lin, Qiang Chen, and Shuicheng Yan, Network in network, CoRR abs/1312.4400 (2013).
- Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár, *Focal loss for dense object detection*, CoRR **abs/1708.02002** (2017).
- Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi, You only look once: Unified, real-time object detection, CoRR abs/1506.02640 (2015).

References V

- Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun, *Faster R-CNN: towards real-time object detection with region proposal networks*, CoRR **abs/1506.01497** (2015).
- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, *Going deeper with convolutions*, CoRR **abs/1409.4842** (2014).
- Matthew D. Zeiler and Rob Fergus, Visualizing and understanding convolutional networks, CoRR abs/1311.2901 (2013).