MACHINE LEARNING AND **APPLICATIONS GROUP**

The notion and solving of known MDPs

Nikola Popović

RL vs. Supervised learning

- Supervised: For each $x^{(i)}$ we know the correct $y^{(i)}$
- Sequential problems:
	- We only know how good the outcome is
	- We do not know how good each action is
	- Examples: Chess, robot control, …
- RL tries to learn which actions are good in which states, based on a lot of attempts

Example: Grid world

- We start at the state $(1,1)$
- We can move North, South, East, West
- Noisy movement:
	- 80% of the time, the action North takes the agent North (if there is no wall there)
	- 10% of the time, North takes the agent West; 10% East
	- If there is a wall in the direction the agent would have been taken, the agent stays put
- Rewards:
	- Small reward at each step (living cost)
	- Big reward at terminal states (termination cost)
- Goal: Maximize sum of rewards

Grid World Actions

Deterministic Grid World I and Stochastic Grid World

MDP

- Sequential decision problem
- Fully observable environment
- Stochastic environment: $P(s_{t+1} | s_t, a_t)$
- Markovian transitions:

$$
P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \dots, s_0, a_0) = P(s_{t+1}|s_t, a_t)
$$

• Utility as a (discounted) sum of rewards:

 $U([s_0, s_1, s_2, ...]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$

Elements of a MDP

- States s
- Actions a
- Transition model $P_{sa}(s') = P(s'|s, a)$
	- Probability that applying a in s leads to s'
- Reward function $R(s)$
	- Could also be $R(s, a, s')$
- Discount factor $\gamma \in [0,1]$

$$
S_0, a_0 \xrightarrow{P_{S_0 a_0}} S_1, a_1 \xrightarrow{P_{S_1 a_1}} S_2, a_2 \xrightarrow{P_{S_2 a_2}} \dots
$$

Policies

- Can a fixed sequence of states be a solution, like in classical search?
	- No, the environment is stochastic
- We should specify what the agent needs to do in every state
- Policy $\pi: S \rightarrow A$ recommends an action for every state
- Optimal policy π^* gives highest expected utility
- With π^* we can construct a simple reflex agent

Example of optimal policies in Grid World

 $R(s) = -0.4$ Pictures taken from [1] $R(s) = -2.0$

Utilities over time

- Utilities evaluate sequences of states
- We will discuss infinite horizon
- With finite horizon, the optimal action in s could change over time
- If we assume stationary preferences:

 $[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots] \qquad \Leftrightarrow \qquad [a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$

- Then there are only 2 ways to define utilities
	- Additive utilities: $U([s_0, s_1, s_2, ...) = R(s_0) + R(s_1) + R(s_2) + \cdots$
	- Discounted utilities: $U([s_0, s_1, s_2, ...)$ $= R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$
- $\gamma \in [0,1]$ in infinite horizons:

 $U([s_0, s_1, s_2, \dots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le R_{max}/(1 - \gamma)$

Value of s using π

• Value of a state s using policy π :

$$
V^{\pi}(s) = E\{R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | \pi, s_0 = s\}
$$

(The expected utility from s to the terminal state using π)

• **Bellman equations**:

$$
V^{\pi}(s) = E\{R(s_0) + \gamma(R(s_1) + \gamma R(s_2) + \cdots) | \pi, s_0 = s\}
$$

= $R(s) + \gamma E\{(R(s_1) + \gamma R(s_2) + \cdots) | \pi\}$
= $R(s) + \gamma E\{V^{\pi}(s_1)\}$

$$
(s, \pi(s) \xrightarrow{P_{s\pi(s)}} s')
$$

= $R(s) + \gamma \sum_{s'} P_{s\pi(s)}(s')V^{\pi}(s')$
(N_s non-linear equations with N_s unknowns)

Example of a Bellman equation

$$
V^{\pi}(s_0) = R(s_0) + \gamma (P_{s_0, up}(s_a) V^{\pi}(s_a) + P_{s_0, up}(s_b) V^{\pi}(s_b) + P_{s_0, up}(s_c) V^{\pi}(s_c))
$$

$$
= R(s_0) + \gamma (0.1 V^{\pi}(s_a) + 0.8 V^{\pi}(s_b) + 0.1 V^{\pi}(s_c))
$$

Optimal policy π^*

• Optimal value of a state s:

$$
V^*(s) = \max_{\pi} V^{\pi}(s)
$$

$$
= R(s) + \max_{a} \gamma \sum_{s'} P_{sa}(s')V^*(s')
$$

 $(N_s$ non-linear equations with N_s unknowns)

• Optimal policy:

$$
\pi^*(s) = \underset{a}{\text{argmax}} \sum_{s'} P_{sa}(s')V^*(s')
$$

Example of a optimal value Bellman equation

$$
V^*(s) = R(s) + \gamma \max_{a} \left[\sum_{s'} P_{s,up}(s')V^*(s'), \sum_{s'} P_{s,down}(s')V^*(s'), \sum_{s'} P_{s,left}(s')V^*(s'), \sum_{s'} P_{s,right}(s')V^*(s') \right]
$$

Example: Grid world optimal values

Noise = 0.2 Discount = 1 Picture taken from [1] **Example 20** Living reward = 0

Example: Grid world optimal values

Worth Next Step

Worth In Two Steps

Pictures taken from [1]

Noise = 0.2 Discount = 0.9 Living reward $= 0$

Example: Grid world optimal values

Noise = 0.2 Discount = 0.9 Living reward = -0.1

Value iteration

- Task: For given $R(s)$, $P_{sa}(s')$ and γ compute $V^*(s)$, $\forall s$
- Assumption: finite number of states, and actions in each state
- Value iteration:
	- 0. Initialization: $V_0(s) = 0$, $\forall s$
	- 1. for $t = 1,2,3, ...$ (untill convergence) do:

$$
V_t(s) = R(s) + \gamma \max_{a'} \sum_{s'} P_{sa}(s') V_{t-1}(s')
$$

- Bellman equations have a unique solution
- Convergence: $V_t(s)$ doesn't differ much from $V_{t-1}(s)$

Value iteration

$$
V_t(s) = R(s) + \gamma \max_{a'} \sum_{s'} P_{sa}(s') V_{t-1}(s')
$$

- Complexity of each iteration: $O(|S|^2|A|)$:
	- We have to update the value of every state $s \in S$
	- For every state s : we have to take into account every action a
	- For each (s, a) pair we have to analyze all successor states s'
- Sinchronous updates: computed $V_t(s)$'s are used in the next iteration for the first time
- Asynchronous updates: Use computed $V_t(s)$'s for computing the rest of the $V_f(s)'s$

Noise = 0.2 Discount = 0.9 Picture taken from [1] Living reward = 0

VALUES AFTER I ITERATIONS

Noise $= 0.2$ Discount $= 0.9$ Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise = 0.2 Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount = 0.9 Living reward $= 0$

Noise $= 0.2$ Discount $= 0.9$ Living reward $= 0$

Value iteration: Convergence

- Bellman equations have a unique solution
- Interpretation: $V_f(s)$ is the optimal value if we have t moves left:
	- $V_0(s) = 0$: we cant make moves anymore
	- $V_1(s) = R(s)$: we can only collect the current reward

•
$$
V_2(s) = R(s) + \gamma \max_{a'} \sum_{s'} P_{sa}(s') R(s')
$$

- \bullet ……
- Convergence:
	- Bellman update is a contraction on the space of value vectors: max $\overline{\mathcal{S}}$ $|V_{i+1}(s) - V_{i+1}(s)'| \le \gamma \max_{s}$ \overline{S} $|V_i(s) - V_i(s)'|$

$$
\max_{S} |V_{i+1}(s) - V^*(s)| \le \gamma \max_{S} |V_i(s) - V^*(s)|
$$

Value iterations flaws

- Its slow: $O(|S|^2|A|)$ for every iteration
- The $max($.) rarely changes its choice of a \boldsymbol{a}
	- Big computational expense
- The extracted policy usually converges long before the values do
- We can also compute $V^{\pi}(s)$ in a similar way:

$$
V_t(s) = R(s) + \gamma \sum_{s'} P_{s\pi(s)}(s') V_{t-1}(s')
$$

(suitable for large |S|)

Example: Policy evaluation

Always Go Right **Always Go Forward**

Example: Policy evaluation

Always Go Right **Always Go Forward**

Policy iteration

- Initialization: Pick a random π_0
- for $t = 1,2,3, ...$ (untill convergence) do:
	- 1. Policy evaluation:

Calculate $V^{\pi_t}(s)$ ($N_s \times N_s$ linear system or Bellman updates)

• 2. Policy update:

$$
\pi_{t+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P_{sa}(s') V^{\pi_t}(s')
$$

- Policy iteration with Bellman updates is often much more efficient than Value iteration or standard Policy iteration
- Convergence: $V^{\pi_t}(s)$ converged or if $\pi_{t+1}(s) = \pi_t$ (s

References

[1] UC Berkeley: CS188 Intro to AI, lecture slides, http://ai.berkeley.edu/lecture_slides.html - Lecture 8: MDP I and Lecture 9: MDP II (last visited: 11.03.2018)

[2] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach 3rd edition, Prentice Hall, 2009.

[3] Faculty of Electrical Engineering, University of Belgrade: Statistička klasifikacija signala, lecture materials,

[http://automatika.etf.bg.ac.rs/images/FAJLOVI_srpski/predmeti/master](http://automatika.etf.bg.ac.rs/images/FAJLOVI_srpski/predmeti/master_studije/SKS/09 Ucenje podsticanjem.pdf)

_studije/SKS/09%20Ucenje%20podsticanjem.pdf (last visited:

11.03.2018)

Questions?

Thanks for the attention! \odot