
The notion and solving of
known MDPs

Nikola Popović

RL vs. Supervised learning

• Supervised: For each 𝑥(𝑖) we know the correct 𝑦(𝑖)

• Sequential problems:
• We only know how good the outcome is

• We do not know how good each action is

• Examples: Chess, robot control, …

• RL tries to learn which actions are good in which states, based on a lot
of attempts

This slide has been taken from [3]

Example: Grid world

• We start at the state (1,1)

• We can move North, South, East, West

• Noisy movement:
• 80% of the time, the action North takes the agent

North (if there is no wall there)
• 10% of the time, North takes the agent West; 10%

East
• If there is a wall in the direction the agent would

have been taken, the agent stays put

• Rewards:
• Small reward at each step (living cost)
• Big reward at terminal states (termination cost)

• Goal: Maximize sum of rewards

Picture taken from [1]

Grid World Actions
Deterministic Grid World Stochastic Grid World

Pictures taken from [1]

MDP

• Sequential decision problem

• Fully observable environment

• Stochastic environment: 𝑃 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡
• Markovian transitions:

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1… , 𝑠0, 𝑎0 = 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡
• Utility as a (discounted) sum of rewards:

𝑈([𝑠0, 𝑠1, 𝑠2, …]) = 𝑅(𝑠0) + 𝛾𝑅(𝑠1) + 𝛾
2𝑅(𝑠2) + ⋯

Elements of a MDP

• States 𝑠

• Actions 𝑎

• Transition model 𝑃𝑠𝑎 𝑠
′ = 𝑃 𝑠′ 𝑠, 𝑎

• Probability that applying 𝑎 in 𝑠 leads to 𝑠′

• Reward function 𝑅 𝑠
• Could also be 𝑅 𝑠, 𝑎, 𝑠′

• Discount factor 𝛾 ∈ [0,1]

𝑠0, 𝑎0
𝑃𝑠0𝑎0
𝑠1, 𝑎1

𝑃𝑠1𝑎1
𝑠2, 𝑎2

𝑃𝑠2𝑎2
…..

Policies

• Can a fixed sequence of states be a solution, like in classical search?
• No, the environment is stochastic

• We should specify what the agent needs to do in every state

• Policy 𝜋: 𝑆 → 𝐴 recommends an action for every state

• Optimal policy 𝜋 ∗ gives highest expected utility

• With 𝜋 ∗ we can construct a simple reflex agent

Picture taken from [1]

Example of optimal policies in Grid World

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Pictures taken from [1]

Utilities over time

• Utilities evaluate sequences of states

• We will discuss infinite horizon

• With finite horizon, the optimal action in 𝑠 could change over time

• If we assume stationary preferences:

• Then there are only 2 ways to define utilities
• Additive utilities: 𝑈([𝑠0, 𝑠1, 𝑠2, …]) = 𝑅(𝑠0) + 𝑅(𝑠1) + 𝑅(𝑠2) + ⋯

• Discounted utilities: 𝑈([𝑠0, 𝑠1, 𝑠2, …]) = 𝑅(𝑠0) + 𝛾𝑅(𝑠1) + 𝛾
2𝑅(𝑠2) + ⋯

• 𝛾 ∈ [0,1] in infinite horizons:

𝑈([𝑠0, 𝑠1, 𝑠2, …]) = 𝑡=0
∞ 𝛾𝑡𝑅 𝑠𝑡 ≤ 𝑅𝑚𝑎𝑥/(1 − 𝛾)

Value of 𝑠 using 𝜋

• Value of a state 𝑠 using policy 𝜋:
𝑉𝜋 𝑠 = 𝐸 𝑅 𝑠0 + 𝛾𝑅 𝑠1 + 𝛾

2𝑅 𝑠2 +⋯ |𝜋, 𝑠0 = 𝑠

(The expected utility from 𝑠 to the terminal state using 𝜋)

• Bellman equations:
𝑉𝜋 𝑠 = 𝐸 𝑅 𝑠0 + 𝛾(𝑅 𝑠1 + 𝛾𝑅 𝑠2 +⋯)|𝜋, 𝑠0 = 𝑠

= 𝑅 𝑠 +𝛾𝐸 (𝑅 𝑠1 + 𝛾𝑅 𝑠2 +⋯)|𝜋

= 𝑅 𝑠 +𝛾𝐸 𝑉𝜋 𝑠1

(𝑠, 𝜋(𝑠)
𝑃𝑠𝜋(𝑠)
𝑠′)

= 𝑅 𝑠 + 𝛾

𝑠′

𝑃𝑠𝜋(𝑠)(𝑠
′)𝑉𝜋 𝑠′

(𝑁𝑠 non-linear equations with 𝑁𝑠 unknowns)

Example of a Bellman equation

𝑠 = 𝒔𝟎
𝜋(𝑠0) = 𝒖𝒑

𝑃𝑠0,𝑢𝑝 𝑠𝑏 = 0.8𝑃𝑠0,𝑢𝑝 𝑠𝑎 = 0.1 𝑃𝑠0,𝑢𝑝 𝑠𝑐 = 0.1

𝒔𝒂 𝒔𝒃 𝒔𝒄

𝑉𝜋 𝑠0 = 𝑅 𝑠0 + 𝛾(𝑃𝑠0,𝑢𝑝 𝑠𝑎 𝑉
𝜋 𝑠𝑎

+𝑃𝑠0,𝑢𝑝 𝑠𝑏 𝑉
𝜋 𝑠𝑏

+𝑃𝑠0,𝑢𝑝 𝑠𝑐 𝑉
𝜋 𝑠𝑐)

= 𝑅 𝑠0 + 𝛾(0.1𝑉𝜋 𝑠𝑎
+0.8𝑉𝜋 𝑠𝑏
+0.1𝑉𝜋 𝑠𝑐)

Picture taken from [1]

Optimal policy 𝜋∗

• Optimal value of a state 𝑠:
𝑉∗ 𝑠 = max

𝜋
𝑉𝜋 𝑠

= 𝑅 𝑠 +max
𝑎
𝛾

𝑠′

𝑃𝑠𝑎(𝑠
′)𝑉∗ 𝑠′

(𝑁𝑠 non-linear equations with 𝑁𝑠 unknowns)

• Optimal policy:

𝜋∗ 𝑠 = argmax
𝑎

𝑠′

𝑃𝑠𝑎(𝑠
′)𝑉∗ 𝑠′

Example of a optimal value Bellman equation

𝑉∗ 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

[𝑠′ 𝑃𝑠,𝑢𝑝 𝑠
′ 𝑉∗ 𝑠′ ,

 𝑠′ 𝑃𝑠,𝑑𝑜𝑤𝑛 𝑠
′ 𝑉∗ 𝑠′ ,

 𝑠′ 𝑃𝑠,𝑙𝑒𝑓𝑡 𝑠
′ 𝑉∗ 𝑠′ ,

 𝑠′ 𝑃𝑠,𝑟𝑖𝑔ℎ𝑡 𝑠
′ 𝑉∗ 𝑠′]

Picture taken from [1]

Example: Grid world optimal values

Noise = 0.2
Discount = 1
Living reward = 0Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Worth Now

Worth Next Step

Worth In Two Steps

Example: Grid world optimal values

Pictures taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = -0.1

Example: Grid world optimal values

Picture taken from [1]

Value iteration

• Task: For given 𝑅 𝑠 , 𝑃𝑠𝑎(𝑠
′) and 𝛾 compute 𝑉∗ 𝑠 , ∀𝑠

• Assumption: finite number of states, and actions in each state

• Value iteration:
• 0. Initialization: 𝑉0 𝑠 = 0, ∀𝑠

• 1. for 𝑡 = 1,2,3,… 𝑢𝑛𝑡𝑖𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 do:

𝑉𝑡(𝑠) = 𝑅 𝑠 + 𝛾max
𝑎′

𝑠′

𝑃𝑠𝑎 𝑠
′ 𝑉𝑡−1(𝑠

′)

• Bellman equations have a unique solution

• Convergence: 𝑉𝑡 𝑠 doesn’t differ much from 𝑉𝑡−1(𝑠)

Value iteration

𝑉𝑡(𝑠) = 𝑅 𝑠 + 𝛾max
𝑎′

𝑠′

𝑃𝑠𝑎 𝑠
′ 𝑉𝑡−1(𝑠

′)

• Complexity of each iteration: 𝑂(𝑆 2 𝐴):
• We have to update the value of every state 𝑠 ∈ 𝑆

• For every state 𝑠: we have to take into account every action 𝑎

• For each (𝑠, 𝑎) pair we have to analyze all successor states 𝑠′

• Sinchronous updates: computed 𝑉𝑡(𝑠)’s are used in the next iteration
for the first time

• Asynchronous updates: Use computed 𝑉𝑡(𝑠)’s for computing the rest
of the 𝑉𝑡(𝑠)’s

Example: Value iteration (discount + no living reward)

Noise = 0.2
Discount = 0.9
Living reward = 0Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Noise = 0.2
Discount = 0.9
Living reward = 0

Example: Value iteration (discount + no living reward)

Picture taken from [1]

Value iteration: Convergence

• Bellman equations have a unique solution

• Interpretation: 𝑉𝑡(𝑠) is the optimal value if we have 𝑡 moves left:
• 𝑉0 𝑠 = 0 : we cant make moves anymore

• 𝑉1 𝑠 = 𝑅(𝑠) : we can only collect the current reward

• 𝑉2 𝑠 = 𝑅(𝑠) +𝛾max
𝑎′
 𝑠′ 𝑃𝑠𝑎 𝑠

′ 𝑅(𝑠′)

• …..

• Convergence:
• Bellman update is a contraction on the space of value vectors:

max
𝑠
|𝑉𝑖+1 𝑠 − 𝑉𝑖+1 𝑠 ′| ≤ 𝛾max

𝑠
|𝑉𝑖 𝑠 − 𝑉𝑖 𝑠 ′|

max
𝑠
|𝑉𝑖+1 𝑠 − 𝑉

∗ 𝑠 | ≤ 𝛾max
𝑠
|𝑉𝑖 𝑠 − 𝑉

∗ 𝑠 |

Value iterations flaws

• Its slow: 𝑂 𝑆 2 𝐴 for every iteration

• Themax
𝑎
(.) rarely changes its choice of 𝑎

• Big computational expense

• The extracted policy usually converges long before the values do

• We can also compute 𝑉𝜋 𝑠 in a similar way:

𝑉𝑡(𝑠) = 𝑅 𝑠 + 𝛾

𝑠′

𝑃𝑠𝜋(𝑠) 𝑠
′ 𝑉𝑡−1(𝑠

′)

(suitable for large 𝑆)

Example: Policy evaluation

Always Go Right Always Go Forward

Pictures taken from [1]

Example: Policy evaluation

Always Go Right Always Go Forward

Pictures taken from [1]

Policy iteration

• Initialization: Pick a random 𝜋0
• for 𝑡 = 1,2,3, … 𝑢𝑛𝑡𝑖𝑙𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 do:

• 1. Policy evaluation:

Calculate 𝑉𝜋𝑡 𝑠 (𝑁𝑠 x 𝑁𝑠 linear system or Bellman updates)

• 2. Policy update:

𝜋𝑡+1 𝑠 = argmax
𝑎

𝑠′

𝑃𝑠𝑎(𝑠
′)𝑉𝜋𝑡 𝑠′

• Policy iteration with Bellman updates is often much more efficient
than Value iteration or standard Policy iteration

• Convergence: 𝑉𝜋𝑡 𝑠 converged or if 𝜋𝑡+1 𝑠 = 𝜋𝑡 𝑠

References

[1] UC Berkeley: CS188 Intro to AI, lecture slides,
http://ai.berkeley.edu/lecture_slides.html - Lecture 8: MDP I and
Lecture 9: MDP II (last visited: 11.03.2018)

[2] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach 3rd edition, Prentice Hall, 2009.

[3] Faculty of Electrical Engineering, University of Belgrade: Statistička
klasifikacija signala, lecture materials,
http://automatika.etf.bg.ac.rs/images/FAJLOVI_srpski/predmeti/master
_studije/SKS/09%20Ucenje%20podsticanjem.pdf (last visited:
11.03.2018)

http://ai.berkeley.edu/lecture_slides.html
http://automatika.etf.bg.ac.rs/images/FAJLOVI_srpski/predmeti/master_studije/SKS/09 Ucenje podsticanjem.pdf

Questions?

Thanks for the attention!

