## MACHINE LEARNING AND APPLICATIONS GROUP

# The notion and solving of known MDPs



Nikola Popović

## RL vs. Supervised learning

- Supervised: For each  $x^{(i)}$  we know the correct  $y^{(i)}$
- Sequential problems:
  - We only know how good the outcome is
  - We do not know how good each action is
  - Examples: Chess, robot control, ...
- RL tries to learn which actions are good in which states, based on a lot of attempts

## Example: Grid world

- We start at the state (1,1)
- We can move North, South, East, West
- Noisy movement:
  - 80% of the time, the action North takes the agent North (if there is no wall there)
  - 10% of the time, North takes the agent West; 10%
     East
  - If there is a wall in the direction the agent would have been taken, the agent stays put
- Rewards:
  - Small reward at each step (living cost)
  - Big reward at terminal states (termination cost)
- Goal: Maximize sum of rewards



## Grid World Actions

#### Deterministic Grid World



#### Stochastic Grid World



#### MDP

- Sequential decision problem
- Fully observable environment
- Stochastic environment:  $P(s_{t+1}|s_t, a_t)$
- Markovian transitions:

$$P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1} \dots, s_0, a_0) = P(s_{t+1}|s_t, a_t)$$

• Utility as a (discounted) sum of rewards:

 $U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$ 

#### Elements of a MDP

- States s
- Actions *a*
- Transition model  $P_{sa}(s') = P(s'|s,a)$ 
  - Probability that applying a in s leads to s'
- Reward function R(s)
  - Could also be R(s, a, s')
- Discount factor  $\gamma \in [0,1]$

$$s_0, a_0 \xrightarrow{P_{s_0}a_0} s_1, a_1 \xrightarrow{P_{s_1}a_1} s_2, a_2 \xrightarrow{P_{s_2}a_2} \dots$$

#### Policies

- Can a fixed sequence of states be a solution, like in classical search?
  - No, the environment is stochastic
- We should specify what the agent needs to do in every state
- Policy  $\pi: S \rightarrow A$  recommends an action for every state
- Optimal policy  $\pi^{*}$  gives highest expected utility
- With  $\pi^{*}$  we can construct a simple reflex agent



#### Example of optimal policies in Grid World



R(s) = -0.01



R(s) = -0.03





R(s) = -0.4

Pictures taken from [1]

R(s) = -2.0

#### Utilities over time

- Utilities evaluate sequences of states
- We will discuss infinite horizon
- With finite horizon, the optimal action in s could change over time
- If we assume stationary preferences:

 $[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots] \quad \Leftrightarrow \quad [a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$ 

- Then there are only 2 ways to define utilities
  - Additive utilities:  $U([s_0, s_1, s_2, ...]) = R(s_0) + R(s_1) + R(s_2) + \cdots$
  - Discounted utilities:  $U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$
- $\gamma \in [0,1]$  in infinite horizons:

 $U([s_0, s_1, s_2, \dots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le R_{max}/(1-\gamma)$ 

#### Value of s using $\pi$

• Value of a state s using policy  $\pi$ :

$$V^{\pi}(s) = E\{R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | \pi, s_0 = s\}$$

(The expected utility from s to the terminal state using  $\pi$ )

• Bellman equations:

$$V^{\pi}(s) = E\{R(s_0) + \gamma(R(s_1) + \gamma R(s_2) + \cdots) | \pi, s_0 = s\}$$
  
=  $R(s) + \gamma E\{(R(s_1) + \gamma R(s_2) + \cdots) | \pi\}$   
=  $R(s) + \gamma E\{V^{\pi}(s_1)\}$   
 $(s, \pi(s) \xrightarrow{P_{s\pi(s)}} s')$   
=  $R(s) + \gamma \sum_{s'} P_{s\pi(s)}(s') V^{\pi}(s')$   
( $N_s$  non-linear equations with  $N_s$  unknowns)

#### Example of a Bellman equation



$$V^{\pi}(s_0) = R(s_0) + \gamma(P_{s_0,up}(s_a)V^{\pi}(s_a) + P_{s_0,up}(s_b)V^{\pi}(s_b) + P_{s_0,up}(s_c)V^{\pi}(s_c))$$

$$= R(s_0) + \gamma(0.1V^{\pi}(s_a) + 0.8V^{\pi}(s_b) + 0.1V^{\pi}(s_c))$$

#### Optimal policy $\pi^*$

• Optimal value of a state *s*:

$$V^{*}(s) = \max_{\pi} V^{\pi}(s)$$
$$= R(s) + \max_{a} \gamma \sum_{s'} P_{sa}(s')V^{*}(s')$$
$$(N_{s} \text{ non-linear equations with } N_{s} \text{ unknowns})$$

Optimal policy:

$$\pi^*(s) = \operatorname*{argmax}_{a} \sum_{s'} P_{sa}(s') V^*(s')$$

#### Example of a optimal value Bellman equation



$$V^{*}(s) = R(s) + \gamma \max_{a} \left[ \sum_{s'} P_{s,up}(s')V^{*}(s'), \\ \sum_{s'} P_{s,down}(s')V^{*}(s'), \\ \sum_{s'} P_{s,left}(s')V^{*}(s'), \\ \sum_{s'} P_{s,right}(s')V^{*}(s') \right]$$

### Example: Grid world optimal values

| 00        | Gridworl | d Display |       |
|-----------|----------|-----------|-------|
| 1.00 )    | 1.00 →   | 1.00 →    | 1.00  |
| •<br>1.00 |          | ∢ 1.00    | -1.00 |
| 1.00      | ∢ 1.00   | ∢ 1.00    | 1.00  |
|           |          |           |       |

VALUES AFTER 100 ITERATIONS

Noise = 0.2 Discount = 1 Living reward = 0

## Example: Grid world optimal values





Worth Next Step



Worth In Two Steps

Pictures taken from [1]

|           | Gridworld Display |           |        |  |
|-----------|-------------------|-----------|--------|--|
| 0.64 ▸    | 0.74 )            | 0.85 )    | 1.00   |  |
| •<br>0.57 |                   | •<br>0.57 | -1.00  |  |
| ▲<br>0.49 | ∢ 0.43            | ▲<br>0.48 | ∢ 0.28 |  |
| VALUES    | S AFTER 1         | LOO ITERA | ATIONS |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

#### Example: Grid world optimal values

| 00 | C C Gridworld Display       |        |           |                |  |
|----|-----------------------------|--------|-----------|----------------|--|
|    | 0.31 →                      | 0.51 → | 0.72 →    | 1.00           |  |
|    | •<br>0.15                   |        | ▲<br>0.36 | -1.00          |  |
|    | •<br>0.01                   | 0.01 → | •<br>0.15 | <b>∢</b> -0.09 |  |
|    | VALUES AFTER 100 ITERATIONS |        |           |                |  |

Noise = 0.2 Discount = 0.9 Living reward = -0.1

#### Value iteration

- Task: For given R(s),  $P_{sa}(s')$  and  $\gamma$  compute  $V^*(s)$ ,  $\forall s$
- Assumption: finite number of states, and actions in each state
- Value iteration:
  - 0. Initialization:  $V_0(s) = 0, \forall s$
  - 1. for *t* = 1,2,3, ... (*untill convergence*) do:

$$V_t(s) = R(s) + \gamma \max_{a'} \sum_{s'} P_{sa}(s') V_{t-1}(s')$$

- Bellman equations have a unique solution
- Convergence:  $V_t(s)$  doesn't differ much from  $V_{t-1}(s)$

#### Value iteration

$$V_t(s) = R(s) + \gamma \max_{a'} \sum_{s'} P_{sa}(s') V_{t-1}(s')$$

- Complexity of each iteration:  $O(|S|^2|A|)$ :
  - We have to update the value of every state  $s \in S$
  - For every state s: we have to take into account every action a
  - For each (*s*, *a*) pair we have to analyze all successor states *s*'
- Sinchronous updates: computed  $V_t(s)$ 's are used in the next iteration for the first time
- Asynchronous updates: Use computed  $V_t(s)$ 's for computing the rest of the  $V_t(s)$ 's

| Gridworld Display |           |          |          |  |
|-------------------|-----------|----------|----------|--|
|                   |           |          |          |  |
|                   |           | <b>^</b> |          |  |
| 0.00              | 0.00      | 0.00     | 0.00     |  |
|                   |           |          |          |  |
|                   |           |          |          |  |
|                   |           |          |          |  |
| 0.00              |           | 0.00     | 0.00     |  |
|                   |           |          |          |  |
| <b>^</b>          | <b>^</b>  | <b>^</b> | <b>^</b> |  |
| 0.00              | 0.00      | 0.00     | 0.00     |  |
| 0.00              | 0.00      | 0.00     |          |  |
|                   |           |          |          |  |
| 1771              | UES AFTER | O ITERA  | TONS     |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 0 | 0         | Gridworl | d Display |       |
|---|-----------|----------|-----------|-------|
| ſ |           |          |           |       |
|   | 0.00      | 0.00     | 0.00 →    | 1.00  |
|   | •<br>0.00 |          | ∢ 0.00    | -1.00 |
|   |           |          |           |       |
|   | 0.00      | 0.00     | 0.00      | 0.00  |
| l |           | C AFTED  | 1 THEDA   |       |

VALUES AFTER 1 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

| 0 0 | 0                         | Gridworl | d Display |       |  |
|-----|---------------------------|----------|-----------|-------|--|
|     | •                         | 0.00 >   | 0.72 →    | 1.00  |  |
|     | •<br>0.00                 |          | •<br>0.00 | -1.00 |  |
|     | •                         | •        | •<br>0.00 | 0.00  |  |
|     | VALUES AFTER 2 ITERATIONS |          |           |       |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 00 | Gridworld Display         |          |          |       |
|----|---------------------------|----------|----------|-------|
|    | 0.00 →                    | 0.52 →   | 0.78 )   | 1.00  |
|    |                           |          | •        |       |
|    | 0.00                      |          | 0.43     | -1.00 |
|    | <b>^</b>                  | <b>^</b> | <b>^</b> |       |
|    | 0.00                      | 0.00     | 0.00     | 0.00  |
|    |                           |          |          | •     |
|    | VALUES AFTER 3 ITERATIONS |          |          |       |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 000      | Gridworld Display         |          |        |  |
|----------|---------------------------|----------|--------|--|
| 0.37 ▶   | 0.66 )                    | 0.83 )   | 1.00   |  |
| <b>^</b> |                           | <b>^</b> |        |  |
| 0.00     |                           | 0.51     | -1.00  |  |
| <b>^</b> |                           | <b>^</b> |        |  |
| 0.00     | 0.00 →                    | 0.31     | ∢ 0.00 |  |
| VALUE    | VALUES AFTER 4 ITERATIONS |          |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 000       | Gridworl                  | d Display |        |  |
|-----------|---------------------------|-----------|--------|--|
| 0.51 →    | 0.72 →                    | 0.84 )    | 1.00   |  |
| •<br>0.27 |                           | •<br>0.55 | -1.00  |  |
| •         | 0.22 →                    | •<br>0.37 | ∢ 0.13 |  |
| VALUI     | VALUES AFTER 5 ITERATIONS |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 0



Noise = 0.2 Discount = 0.9 Living reward = 0

| 000       | C Cridworld Display       |           |        |  |
|-----------|---------------------------|-----------|--------|--|
| 0.62 )    | 0.74 ▸                    | 0.85 )    | 1.00   |  |
| <b>^</b>  |                           | <b>^</b>  |        |  |
| 0.50      |                           | 0.57      | -1.00  |  |
| •<br>0.34 | 0.36 →                    | •<br>0.45 | ∢ 0.24 |  |
| VALUE     | VALUES AFTER 7 ITERATIONS |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 000       | C Cridworld Display       |           |        |  |
|-----------|---------------------------|-----------|--------|--|
| 0.63)     | 0.74 →                    | 0.85 )    | 1.00   |  |
| <b>^</b>  |                           | <b>^</b>  |        |  |
| 0.53      |                           | 0.57      | -1.00  |  |
| •<br>0.42 | 0.39 )                    | ▲<br>0.46 | ∢ 0.26 |  |
| VALU      | VALUES AFTER 8 ITERATIONS |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 000       | Gridworl                  | d Display |        |  |
|-----------|---------------------------|-----------|--------|--|
| 0.64      | 0.74 )                    | 0.85 )    | 1.00   |  |
| •<br>0.55 |                           | •<br>0.57 | -1.00  |  |
| •<br>0.46 | 0.40 →                    | ▲<br>0.47 | ∢ 0.27 |  |
| VALU      | VALUES AFTER 9 ITERATIONS |           |        |  |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 000                        | ○ ○ Gridworld Display |           |        |
|----------------------------|-----------------------|-----------|--------|
| 0.64 )                     | 0.74 ▸                | 0.85 )    | 1.00   |
| <b>^</b>                   |                       | <b>^</b>  |        |
| 0.56                       |                       | 0.57      | -1.00  |
| •<br>0.48                  | ∢ 0.41                | •<br>0.47 | ∢ 0.27 |
| VALUES AFTER 10 ITERATIONS |                       |           |        |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 000                        | Gridworld Display |           |        |
|----------------------------|-------------------|-----------|--------|
| 0.64 )                     | 0.74 ▶            | 0.85 )    | 1.00   |
| •<br>0.56                  |                   | •<br>0.57 | -1.00  |
| •<br>0.48                  | ∢ 0.42            | •<br>0.47 | ∢ 0.27 |
| VALUES AFTER 11 ITERATIONS |                   |           |        |

Noise = 0.2 Discount = 0.9 Living reward = 0

| 000                        | Gridworld Display |           |        |
|----------------------------|-------------------|-----------|--------|
| 0.64 )                     | 0.74 ▸            | 0.85 )    | 1.00   |
| •<br>0.57                  |                   | •<br>0.57 | -1.00  |
| ▲<br>0.49                  | ∢ 0.42            | •<br>0.47 | ∢ 0.28 |
| VALUES AFTER 12 ITERATIONS |                   |           |        |

Noise = 0.2 Discount = 0.9 Living reward = 0

| Gridworld Display           |        |           |        |
|-----------------------------|--------|-----------|--------|
| 0.64 )                      | 0.74 → | 0.85 )    | 1.00   |
| <b>^</b>                    |        | •         |        |
| 0.57                        |        | 0.57      | -1.00  |
| •<br>0.49                   | ∢ 0.43 | ▲<br>0.48 | ∢ 0.28 |
| VALUES AFTER 100 ITERATIONS |        |           |        |

Noise = 0.2 Discount = 0.9 Living reward = 0

#### Value iteration: Convergence

- Bellman equations have a unique solution
- Interpretation:  $V_t(s)$  is the optimal value if we have t moves left:
  - $V_0(s) = 0$  : we cant make moves anymore
  - $V_1(s) = R(s)$ : we can only collect the current reward

• 
$$V_2(s) = R(s) + \gamma \max_{a'} \sum_{s'} P_{sa}(s') R(s')$$

- .....
- Convergence:
  - Bellman update is a contraction on the space of value vectors:  $\max_{s} |V_{i+1}(s) - V_{i+1}(s)'| \le \gamma \max_{s} |V_i(s) - V_i(s)'|$

$$\max_{s} |V_{i+1}(s) - V^*(s)| \le \gamma \max_{s} |V_i(s) - V^*(s)|$$

#### Value iterations flaws

- Its slow:  $O(|S|^2|A|)$  for every iteration
- The  $\max_{a}(.)$  rarely changes its choice of a
  - Big computational expense
- The extracted policy usually converges long before the values do
- We can also compute  $V^{\pi}(s)$  in a similar way:

$$V_t(s) = R(s) + \gamma \sum_{s'} P_{s\pi(s)}(s') V_{t-1}(s')$$
(suitable for large |S|)

#### Example: Policy evaluation

Always Go Right

Always Go Forward



#### Example: Policy evaluation

#### Always Go Right

| -10.00 | 100.00  | -10.00 |
|--------|---------|--------|
| -10.00 | 1.09 🕨  | -10.00 |
| -10.00 | -7.88 🕨 | -10.00 |
| -10.00 | -8.69 ▶ | -10.00 |

#### Always Go Forward



## Policy iteration

- Initialization: Pick a random  $\pi_0$
- for  $t = 1,2,3, \dots$  (untill convergence) do:
  - 1. Policy evaluation:

Calculate  $V^{\pi_t}(s)$  ( $N_s \times N_s$  linear system or Bellman updates)

• 2. Policy update:

$$\pi_{t+1}(s) = \operatorname*{argmax}_{a} \sum_{s'} P_{sa}(s') V^{\pi_t}(s')$$

- Policy iteration with Bellman updates is often much more efficient than Value iteration or standard Policy iteration
- Convergence:  $V^{\pi_t}(s)$  converged or if  $\pi_{t+1}(s) = \pi_t(s)$

#### References

 [1] UC Berkeley: CS188 Intro to AI, lecture slides, <u>http://ai.berkeley.edu/lecture\_slides.html</u> - Lecture 8: MDP I and Lecture 9: MDP II (last visited: 11.03.2018)

[2] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach 3<sup>rd</sup> edition, Prentice Hall, 2009.

[3] Faculty of Electrical Engineering, University of Belgrade: Statistička klasifikacija signala, lecture materials,

http://automatika.etf.bg.ac.rs/images/FAJLOVI srpski/predmeti/master

studije/SKS/09%20Ucenje%20podsticanjem.pdf (last visited:

11.03.2018)

# Questions?

# Thanks for the attention! 😳