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Bayesian Inference

• It can be applied to classical ML models like linear/logistic regression, 
Deep NN, etc...

• Model parameters are now probability distributions, not regular 
numbers

• We can naturally get a predictive uncertainty and the uncertainty in 
the model



Bayesian Inference

• An example of a predictive distribution for a 1D input space



Linear Regression

• Classical linear regression
y = 𝑓 𝐱 + 𝜖
𝑓 𝐱 = 𝐱𝑇𝐰
𝜖 ∼ 𝒩(0, 𝜎𝑛

2)

• 𝜖 is white noise (independent and indentically distributed)

• Likelihood 

𝑝 𝐲 𝐗,𝐰 = ς𝑖=1
𝑛 𝑝 yi 𝐱𝐢, 𝐰 = ⋯ =𝒩(𝐗T𝐰, 𝜎𝑛

2𝐈)



Bayesian Linear Regression

• We specify the prior beleifs about the model
𝐰 ∼ 𝒩(𝟎, 𝚺𝒑)

• We  obtain the posterior parameter distribution using the dataset

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)

𝑝 𝐲 𝐗 = ∫ 𝑝 𝐲 𝐗,𝐰 𝑝 𝐰 d𝐰
…

𝑝 𝐰 𝐗, 𝐲 ∼ 𝒩
1

𝜎𝑛
2 𝚺𝐰𝐗𝐲, 𝚺𝐰

𝚺𝐰 =
1

𝜎𝑛
2 𝐗𝐗

T + 𝚺𝒑
−1

−1



Bayesian Linear Regression

• Example with a 1D input and no intercept term
y = 𝑤𝑥 + 𝜖
ϵ ∼ 𝒩(0, 𝜎𝑛

2)
𝑤 ∼ 𝒩(0, 𝜎𝑝

2)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)



Bayesian Linear Regression

𝑝 𝐰 𝐗, 𝐲 =
𝑝 𝐲 𝐗,𝐰 𝑝(𝐰)

𝑝(𝐲|𝐗)

Zoomed w-axis



Bayesian Linear Regression

• We have learned the parameter posterior 𝑝 𝐰 𝐗, 𝐲

• We have a new input 𝐱∗ and we want to make a prediction

• Insted of a point-wise prediction we get a predictive distribution

𝑝 𝑓∗ 𝐱∗, 𝐗, 𝐲 = ∫ 𝑝 𝑓∗ 𝐱∗, 𝐰 𝑝 𝐰 𝐗, 𝐲 d𝐰

∼ 𝒩
1

𝜎𝑛
2 𝐱∗

T𝚺𝐰𝐗𝐲, 𝐱∗
T𝚺𝐰𝐱∗



Bayesian Linear Regression

𝑝 𝑓∗ 𝐱∗, 𝐗, 𝐲 = ∫ 𝑝 𝑓∗ 𝐱∗, 𝐰 𝑝 𝐰 𝐗, 𝐲 d𝐰



Bayesian Linear Regression

𝑝 𝑓∗ 𝐱∗, 𝐗, 𝐲 = ∫ 𝑝 𝑓∗ 𝐱∗, 𝐰 𝑝 𝐰 𝐗, 𝐲 d𝐰



Bayesian Linear Regression

𝑝 𝑓∗ 𝐱∗, 𝐗, 𝐲 = ∫ 𝑝 𝑓∗ 𝐱∗, 𝐰 𝑝 𝐰 𝐗, 𝐲 d𝐰



Bayesian Linear Regression

• We can use a feature mapping 𝜙: ℝ𝐷 ↦ ℝ𝑁 on the input
𝑓 𝐱 = 𝜙(𝐱)𝑇𝐰

• For example 𝜙 𝑥 = 1, 𝑥, 𝑥2, 𝑥3, …

• We just need to replace 𝐱 with 𝜙(𝐱) in the equations

𝑝 𝑓∗ 𝐱∗, 𝐗, 𝐲 ∼ 𝒩
1

𝜎𝑛
2𝛟∗

T𝚺𝐰𝚽𝐲,𝛟∗
T𝚺𝐰𝛟∗

𝚺𝐰 =
1

𝜎𝑛
2𝚽𝚽

T + 𝚺𝒑
−1

−1

• Computational complexity is dominated with inverting a 𝑁 × 𝑁
matrix, which is not convinient if 𝑁 is very large



Bayesian Linear Regression

• An alternative form of the predictive distribution
𝑝 𝑓∗ 𝐱∗, 𝐗, 𝐲

∼ 𝒩 𝛟∗
T𝚺𝒑𝚽 𝚽T𝚺𝒑𝚽+ 𝜎𝑛

2𝐈
−1
𝐲 , 𝛟∗

T𝚺𝒑𝛟∗ −𝛟∗
T𝚺𝒑𝚽 𝚽T𝚺𝒑𝚽+ 𝜎𝑛

2𝐈
−1
𝚽T𝚺𝒑𝛟∗

• The features are present in equations only in the following form
𝑘 𝐱, 𝐱′ = 𝜙 𝐱 T𝚺𝒑𝜙(𝐱

′)

• We can use the kernel trick

𝜓 𝐱 = 𝚺𝒑
1/2

𝜙 𝐱 ⟹ 𝑘 𝐱, 𝐱′ = 𝜓 𝐱 ⋅ 𝜓 𝐱′

• We dont need to calculate 𝜙 𝐱 explicitly, just the kernel 𝑘 𝐱, 𝐱′



Gaussian distribution

𝑝 𝑥 =
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2𝑥 ∼ 𝒩(𝜇, 𝜎2)



Gaussian distribution

𝐱 ∼ 𝒩(𝛍, 𝚺)
𝐱 = 𝑥1 𝑥2

T

𝝁 = −1 − 1 T

𝚺 =
1 2
2 5

𝑝 𝐱 =
1

2𝜋 𝑛 𝚺
𝑒−

1
2 𝐱−𝛍 𝑇𝚺−1 𝐱−𝛍



Gaussian distribution

𝑥1|𝑥2 = −4 ∼ 𝒩( ҧ𝜇, ത𝜎2)

ҧ𝜇 = 𝜇1 + Σ12Σ22
−1(𝑥2 − 𝜇2)

ത𝜎2=Σ11 − Σ12Σ22
−1Σ21

• This is one of the main ideas 
behind GPs



Gaussian distribution
• We have an 8-dimensional multivariate Gaussian distribution

𝑝 𝑥1:8



Gaussian distribution

𝑝 𝑥8|𝑥1:4



Gaussian distribution

𝑝 𝑥8|𝑥1:6



Gaussian distribution

𝑝 𝑥8|𝑥1:7



Gaussian Processes

• D: A Gaussian Process is a collection of random variables, any finite 
number of which have a joint Gaussian distribution.

• Completely described by it’s mean and covariance function
𝑓 𝒙 ∼ 𝒢𝒫(𝑚 𝒙 , 𝑘 𝒙, 𝒙′ )

• Usually we assume 𝑚 𝒙 = 0, but this isn’t mandatory

• Nonparametric Bayesian model

• We will discuss GPs for regression



Parametric and nonparametric models

• Parametric models encode the information from the training set into 
a set of parameters 𝐰

• Usually the 𝐰 is of a much lower dimension than the number of 
datapoints

• To make a prediction we don’t need the training set, we just need 𝐰

• Nonparametric models don’t make this assumption 

• They usually use all the training data to make a prediction



Expressiveness of GPs

• One-hidden-layer Bayesian NN 
converges to a Gaussian Process 
as  the number of the neurons 
in the layer goes to infinity.
(Chapter 2.1)



Gaussian Processes

• Model:

𝑦𝑖 = 𝑓 𝒙𝒊 + 𝜖𝑖
𝜖𝑖 ∼ 𝒩(0, 𝜎𝑛

2)

• We first need to specify a prior for 𝑓 𝒙𝒊
𝑓 𝒙𝒊 ∼ 𝒢𝒫(0, 𝑘 𝒙, 𝒙′ )



Prior distribution

𝑘 𝒙𝑝, 𝒙𝑞 = 𝜎𝑓
2 exp −

𝒙𝑝 − 𝒙𝑞
2

2𝑙2



Prior distribution

𝑘 𝒙𝑝, 𝒙𝑞 = 𝜎𝑓
2 exp −

𝒙𝑝 − 𝒙𝑞
2

2𝑙2



Prior distribution

𝑘 𝒙𝑝, 𝒙𝑞 = 𝜎𝑓
2 exp −

𝒙𝑝 − 𝒙𝑞
2

2𝑙2



Prior distribution

𝑘 𝒙𝑝, 𝒙𝑞 = 𝜎𝑓
2 exp −

𝒙𝑝 − 𝒙𝑞
2

2𝑙2



Prior distribution

𝑘 𝒙𝑝, 𝒙𝑞 = 𝜎𝑓
2 exp −

𝒙𝑝 − 𝒙𝑞
2

2𝑙2



Prior distribution

𝑘 𝒙𝑝, 𝒙𝑞 = 𝜎𝑓
2 exp −

𝒙𝑝 − 𝒙𝑞
2

2𝑙2



Gaussian Processes

• We have a training set 𝒟 = (𝐗, 𝐲)

• We want to predict function values 𝑓∗ at the input location 𝐱∗

• From the specified prior we can write the joint distribution
𝐲
𝑓∗

∼ 𝒩 𝟎,
𝐊 𝐗, 𝐗 + 𝜎2𝐈 𝐤 𝐗, 𝐱∗

𝒌 𝐱∗, 𝐗 𝑘 𝐱∗, 𝐱∗
• In shorter notation

𝐲
𝑓∗

∼ 𝒩 𝟎,
𝐊 +𝜎2 𝐈 𝐤∗
𝐤∗
T 𝑘∗∗



Gaussian Processes

• Posterior predictive distribution for a new input 𝒙∗, using the 
training set 𝒟 = (𝑿, 𝒚)

𝑓∗|𝒙∗, 𝑿, 𝒚 ∼ 𝒩(𝜇 𝒙∗ , 𝜎
2 𝒙∗ )

𝜇 𝒙∗ = 𝒌∗
𝑇 𝑲+ 𝜎𝑛

2𝑰 −1𝐲

𝜎2 𝒙∗ = 𝑘 𝒙∗, 𝒙∗ − 𝒌∗
𝑇 𝑲+ 𝜎𝑛

2𝑰 −1𝒌∗

• 𝑲+ 𝜎𝑛
2𝑰 −1 has complexity 𝑂(𝑛3)

• There is a good and numerically stable way of implementig these 
equations ([1], page 19.)



Posterior (predictive) distribution

𝑝(𝑓∗|𝒙∗, 𝑿, 𝒚)



Gaussian Processes in a different view

• 𝑓∗|𝒙∗, 𝑿, 𝒚 looks like Bayesian linear regression in a feature space

𝐊 𝐗, 𝐗 = 𝚽(𝐗)T𝚺𝒑𝚽 (𝐗)

• For every transformation in the feature space we can calculate the 
corresponding kernel

• For each positive-definite covariance function 𝑘, there exists some 
feature space 𝜙



Making the final decision

• When we need to give a point-wise prediction we could take the 
mean of the predictive distribution

𝜇 𝒙∗



Squared-exponential kernel
• Very smooth

• 𝑙 is the characteristic length-scale

• Each dimension could have its own lenght-
scale (ARD)

Realizations without noise

𝑘 𝒙𝑝, 𝒙𝑞 = exp −
𝒙𝑝 − 𝒙𝑞

2

2𝑙2



Matérn class kernels
• 𝑣 → ∞ leads to a squared-exponential 

kernel
• 𝑣 determines the smoothness 
• 𝑙 is the length-scale

      

   

   

   

   

   

   

                   

     

     

     

𝑘 𝒙𝑝, 𝒙𝑞 =
21−𝑣

Γ(𝑣)

2𝑣 𝒙𝑝 − 𝒙𝑞

𝑙

𝒗

Kv
2𝑣 𝒙𝑝 − 𝒙𝑞

𝑙

Realizations without noise



Periodic kernel

• 𝑝 determines the period

• 𝑙 is the length-scale
𝑘 𝒙𝑝, 𝒙𝑞 = exp −

2 sin2 Τ𝜋 𝒙𝑝 − 𝒙𝑞 𝑝

𝑙2

Realizations without noise



Generating covariance functions

• There are a lot of different kernels

• Kernels can be combined
• A sum of two kernels is a valid kernel

• A product of two kernels is a valid kernel
• We could multiply each kernel with the process variance 𝜎𝑓

2



Model selection (training)

• The model here will be the mean 𝑚 𝒙 and the covariance function 
𝑘 𝒙, 𝒙′ , along with their hyperparameters 𝜃

• Model selction could give an interpretation of the data

• Bayesian model selection
• Maximum likelihood type-II approximation

• Crossvalidation



General Bayesian model selection

𝑝(𝐰|𝐲, 𝐗, 𝛉,ℋ𝑖) =
𝑝(𝐲|𝐗,𝐰,ℋ𝑖)𝑝(𝐰|𝛉,ℋ𝑖)

𝑝(𝐲|𝐗, 𝛉,ℋ𝑖)

𝑝(𝛉|𝐲, 𝐗,ℋ𝑖) =
𝑝(𝐲|𝐗, 𝛉,ℋ𝑖)𝑝(𝛉|ℋ𝑖)

𝑝(𝐲|𝐗,ℋ𝑖)

𝑝(ℋ𝑖|𝐲, 𝐗) =
𝑝(𝐲|𝐗,ℋ𝑖)𝑝(ℋ𝑖)

𝑝(𝐲|𝐗)



Bayesian model selection 
(training)

log 𝑝(𝒚|𝑿, 𝛉,ℋ𝑖) = −
1

2
𝐲 𝐊 + 𝜎𝑛

2𝐈 −1𝐲 −
1

2
log 𝐊 + 𝜎𝑛

2𝐈 −
𝑛

2
log(2𝜋)

data fit

penalty for model 
complexity

• Each evidence evaluation 
costs 𝑂(𝑛3) (matrix inversion)

• Numerically stable 
implementation of the 
equation ([1], page 19.)



Bayesian model selection (training)

characteristic lenghtscale l

lo
g-

m
ar

gi
n

al
 li

ke
lih

oo
d

Hyperparameter selection with the marginal likelihood

n=8

n=15
n=30

n=100
true l



Bayesian model selection (training)

          
    

    

    

   

   

 

                         

                 

   

   

   

   

   

   

   

   

           

 

  

  

  

 

 

 

 

  
 
 

                                 
 
 
   

 
 
          

• 15 training datapoints



Bayesian model selection (training)

           

 

  

  

  

 

 

 

 

  
 
 

                             
 
 
   

 
 
         

• 15 training datapoints



Bayesian model selection (training)

           

 

  

  

  

 

 

 

 

  
 
 

                                
 
 
   

 
 
       

• 15 training datapoints



Bayesian model selection (training)

• 60 training datapoints



Bayesian model selection (training)

• Gradient descent (implementation trick: learn log(∙) of parameters)



Crossvalidation

• We break the training set into the new training set and the validation set
• Or use k-fold crossvalidation

• Find the 𝛉 and ℋ𝑖 which have the best performance on the validation set

• Metrics

𝐿 𝐗𝑣 , 𝐲𝑣, 𝛉,ℋ𝑖 =
1

𝑛𝑣


𝑖=1

𝑛𝑣

𝑦𝑝𝑟𝑒𝑑
𝑖

− 𝑦𝑣
𝑖

2

𝐿 𝐗𝑣 , 𝐲𝑣, 𝛉,ℋ𝑖 =
1

𝑛𝑣
σ𝑖=1
𝑛𝑣 −log 𝑝(𝑦𝑣

𝑖
|𝐱𝑣

𝑖
, 𝐲𝑡 , 𝐗t, 𝛉,ℋ𝑖)

=
1

𝑛𝑣


𝑖=1

𝑛𝑣
1

2
log 𝜎𝑣

𝑖
+

𝜇𝑣
𝑖
− 𝑦𝑣

𝑖
2

2𝜎𝑣
2 𝑖

+
1

2
log 2𝜋



Kernel design

𝑘 𝒙𝑝, 𝒙𝑞 = 𝑘𝑆𝐸 𝒙𝑝, 𝒙𝑞

• The Mauna Loa observatory dataset – monthly 𝐶𝑂2 concentration in Hawai 

Figures taken from http://gpss.cc/gpss18/slides/Durrande2018.pdf

small lengthscale big lengthscale

http://gpss.cc/gpss18/slides/Durrande2018.pdf


Kernel design

𝑘 𝒙𝑝, 𝒙𝑞 = 𝑘𝑆𝐸 𝒙𝑝, 𝒙𝑞 + 𝑘𝑆𝐸 𝒙𝑝, 𝒙𝑞 + 𝑘𝑃𝐸𝑅 𝒙𝑝, 𝒙𝑞 +𝑘𝑄𝑈𝐴𝐷𝑅𝐴𝑇𝐼𝐶 𝒙𝑝, 𝒙𝑞

Figure taken from http://gpss.cc/gpss18/slides/Durrande2018.pdf

http://gpss.cc/gpss18/slides/Durrande2018.pdf


Gaussian Processes for Regression

Load the training data 𝒟 = (𝑿, 𝒚)

Model selection – (𝑚 𝒙 , 𝑘 𝒙, 𝒙′ , 𝜃)

Calculate the posterior for the new input 𝒙∗
𝑓∗|𝒙∗, 𝑿, 𝒚 ∼ 𝒩(𝜇 𝒙∗ , 𝜎

2 𝒙∗ )





Sparse GPs

Figure taken from http://inverseprobability.com/talks/notes/deep-gaussian-processes.html

http://inverseprobability.com/talks/notes/deep-gaussian-processes.html


Sparse GPs

Figure taken from http://inverseprobability.com/talks/notes/deep-gaussian-processes.html

http://inverseprobability.com/talks/notes/deep-gaussian-processes.html


Deep GPs

• DL revolution: 
hierarchical learning

• Analytically intractable

• Variational approaches 
are used

Figures taken from http://inverseprobability.com/talks/notes/deep-gaussian-processes.html

http://inverseprobability.com/talks/notes/deep-gaussian-processes.html


Some applications

• Bayesian optimization
• Tuning the Swiss Free Electron Laser 

• Tuning Reinforcement Learning Hyperparameters

• Crowd counting from an image

• Geostatistics

• Modelling of facial expressions

• Learning a model of a dynamic system
• Applying model-based RL





Where to begin?

• C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine 
Learning (Adaptive Computation and Machine Learning). The MIT 
Press, 2005.
➢Beginners guide to GP for regression (1., 2., 4. briefly, 5.)

• http://gpss.cc/gpss18/program
➢Gaussian Process and Uncertainty Quantification Summer School (video 

lectures)

• https://deepbayes.ru/
➢DL and Bayesian methods summer school, should have video lectures

http://gpss.cc/gpss18/program
https://deepbayes.ru/


Where to begin?

• http://inverseprobability.com/talks/notes/deep-gaussian-
processes.html
➢Neil Lawrence on sparse GPs and deep GPs

• https://www.prowler.io/blog/sparse-gps-approximate-the-posterior-
not-the-model
➢Blog about the trends in sparse GPs (has highlighted some important papers)

• A. Damianou, N. Lawrence, Deep Gaussian Processes, Proceedings of 
the Sixteenth International Conference on Artificial Intelligence and 
Statistics, PMLR 31:207-215, 2013.

http://inverseprobability.com/talks/notes/deep-gaussian-processes.html
https://www.prowler.io/blog/sparse-gps-approximate-the-posterior-not-the-model


Thank you for your attention! 

☺


