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Bayesian Inference

* [t can be applied to classical ML models like linear/logistic regression,
Deep NN, etc...

* Model parameters are now probability distributions, not regular
numbers

* We can naturally get a predictive uncertainty and the uncertainty in
the model



Bayesian Inference

* An example of a predictive distribution for a 1D input space

Posterior distribution (1=0.98157; o2=1; 62=0.027696)




Linear Regression

* Classical linear regression

y=f(x)+e
fx) =x"'w
e ~N(0,02)

* ¢ is white noise (independent and indentically distributed)

 Likelihood
p(yIX,w) =[IL; p(yilx;, w) = - = N (X w, g71)



Bayesian Linear Regression

* We specify the prior beleifs about the model
w~N(0,Z%,)

 We obtain the posterior parameter distribution using the dataset

_ p(yIX, w)p(w)
p(wiX,y) = p(y|X)

p(yIX) = | p(yIX, w)p(w)dw

p(WIX,y) ~ NV (Gi% 2, Xy, Ly )

1 -1
— T -1



Bayesian Linear Regression

* Example with a 1D input and no intercept term
y=WX-+E€
e ~N(0,02)
w ~ N(0,05)



Bayesian Linear Regression
p(y|X, w)p(w)

POy = e

Prior distribution
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Bayesian Linear Regression

p(yIX, w)p(w)
p(y|X)

Current dataset

p(w|X,y) =

25 | | |

True dependence




Bayesian Linear Regression
p(y|X, w)p(w)

POy = e

Likelihood with 1 datapoint.
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p(y|X,w) scaled
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Bayesian Linear Regression

p(yIX, w)p(w)
p(yIX)

p(wlX,y) =

Posterior with 1 datapoint.
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Bayesian Linear Regression

p(yIX, w)p(w)
p(y|X)

Current dataset

p(w|X,y) =

25 | | |

True dependence




Bayesian Linear Regression
p(y|X, w)p(w)

POy = e

Likelihood with 2 datapoints.

p(w)

p(y|X,w) scaled

w
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Bayesian Linear Regression

p(yIX, w)p(w)
p(yIX)

p(wlX,y) =

Posterior with 2 datapoints.

p(w)
p(y|X,w) scaled
PwWIX.y)
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Bayesian Linear Regression

p(yIX, w)p(w)
p(y|X)

Current dataset

p(w|X,y) =

True dependence




Bayesian Linear Regression

p(y|X, w)p(w)

POy = e

Likelihood with 10 datapoints.
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Bayesian Linear Regression

p(yIX, w)p(w)
p(yIX)

p(wlX,y) =

Posterior with 10 datapoints.
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Bayesian Linear Regression

* We have learned the parameter posterior p(w|X,y)

* We have a new input X, and we want to make a prediction
* Insted of a point-wise prediction we get a predictive distribution

p(f.1x., X, y) = | p(flx., wp(w|X,y) dw

1
~N (—2 X'z, Xy, X;FZWX*)

On



Bayesian Linear Regression

p(f.x., X y) = | p(filx., wp(w|X,y) dw

Predictive distribution with 1 datapoint.




Bayesian Linear Regression

p(f.lx., X, y) = | p(fulx., wp(W|X,y) dw

Predictive distribution with 2 datapoint.




Bayesian Linear Regression

p(f.x., X y) = | p(filx., wp(w|X,y) dw

Predictive distribution with 10 datapoint.

30 —




Bayesian Linear Regression

* We can use a feature mapping ¢: R? —» R on the input
fx)=ox)'w
* For example ¢(x) = [1,x,x2,x3, ...]
* We just need to replace x with ¢ (X) in the equations
1
p(fx., X, y) ~ NV (; P Zy Py, d);rzwd)*)

n 1
Y. = i<1><1>T+>:—1
w 0_7% p

* Computational complexity is dominated with invertinga N X N
matrix, which is not convinient if N is very large



Bayesian Linear Regression

* An alternative form of the predictive distribution

(flx, X y)

~N ( 7L, &(TL, ® + 621) 'y

-1
$rZ, . — 01X, P(PTZ, @ +021) PTZ, .

* The features are present in equations only in the following form

k(x,x") = ¢(x)"Z,0(x")

e \We can use the kernel trick

P(x) =2/ 2P (%) = k(x,x) = Px) - P(x')
* We dont need to calculate ¢p(x) explicitly, just the kernel k(x,x")




Gaussian distribution

_(x=w?
x ~ N(u,0%) p(x) = —e” 207
To
Gaus'lsian distriblutinn (,u=6,lcr=2).
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Gaussian distribution

2D Gaussian distribution.

X~ N(u Z)

X = [xl x, ]! '
—1 — 1 N
>: - [ |

o

>
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Gaussian distribution

Conditioned Gaussian distribution.

X1|x%, = =4 ~ N (1, 5%) ar

0=y + 212255 (X — 1)
0°=X11 — 2:1222_21221

X2

* This is one of the main ideas 4 ¥
behind GPs _ CC/_E




Gaussian distribution

e We have an 8-dimensional multivariate Gaussian distribution
p(x1:8)

Covariance matrix of a multivariate Gausgi.;an. One draw from a multivariate Gaussian.
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Gaussian distribution

p(xg|x1.4)

Conditioning the multivariate Gaussian.
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Gaussian distribution

p(xg|x1.6)

Conditioning the multivariate Gaussian.
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Gaussian distribution

p(xg|x1.7)

Conditioning the multivariate Gaussian.
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Gaussian Processes

* D: A Gaussian Process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

 Completely described by it’s mean and covariance function

f(x) ~GP(m(x), k(x,x"))

* Usually we assume m(x) = 0, but this isn’t mandatory

* Nonparametric Bayesian model
* We will discuss GPs for regression



Parametric and nonparametric models

* Parametric models encode the information from the training set into
a set of parameters w

e Usually the w is of a much lower dimension than the number of
datapoints

* To make a prediction we don’t need the training set, we just need w

* Nonparametric models don’t make this assumption
* They usually use all the training data to make a prediction



Expressiveness of GPs

* One-hidden-layer Bayesian NN
converges to a Gaussian Process
as the number of the neurons
in the layer goes to infinity.
(Chapter 2.1)

BAYESIAN LEARNING FOR NEURAL NETWORKS

Radford M. Neal

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy,
Graduate Department of Computer Science,

in the University of Toronto

(© Copyright 1995 by Radford M. Neal

et




Gaussian Processes

 Model:

yi = f(xp) + €
€ ~ N(O’ O-T%)

* We first need to specify a prior for f(x;)
f(xi) ~GP(O0, k(x,x"))



Prior distribution
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Prior distribution

pr — quZ)

k(xp'xq) = Ufz €xp (_ 212

Prior covariance function (1=0.3; of=1; af‘=0.05) Prior distribution with samples (1=0.3; af=1; af‘=0.05)
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Prior distribution
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Prior distribution

k(xp,xq) = afz exp (—

Prior covariance function (I=1; af=1; oﬁ=0.3)

pr — qu2>
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Prior distribution with samples (I=1; af=1; 0ﬁ=0.3)
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Prior distribution

2
pr — qu
212

Prior covariance function (I=1; af=1; o§=0.05) Prior distribution with samples (I1=1; of=1; 0ﬁ=0.05)

k(xp,xq) = afz exp | —

10.9

L

j

MMW NWM\N ‘
.L I Nl il ‘l“

f(x)
o
=+

|




Prior distribution

k(xp,xq) = afz exp\ —

}

Prior covariance function (I=1; oy =9; aﬁ=0.05)

f(x)
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Gaussian Processes

* We have a training setD = (X y)
* We want to predict function values f, at the input location x,

* From the specified prior we can write the joint distribution

y KX, X)+0%l k(Xx,)
Fl~w ("' [ k(x,,X) k(x*,xg)

* In shorter notation

2 k.
floo [0 )



Gaussian Processes

* Posterior (predictive)distribution for a new input x,, using the
trainingsetD = (X, y)

ulx,) = kI(K + oD~y
d’(x,) = k(x,,x.) —kI(K+ 2D 'k,

* (K + 02I)~1 has complexity O (n?)

* There is a good and numerically stable way of implementig these
equations ([1], page 19.)



Posterior (predictive) distribution

Posterior distribution (1=0.92397; 02=1; ¢2=0.060509)

p(filx, X, y)




Gaussian Processes in a different view

* f.|x., X,y looks like Bayesian linear regression in a feature space
KX X) =2X)'Z,® (X)

* For every transformation in the feature space we can calculate the
corresponding kernel

 For each positive-definite covariance function k, there exists some
feature space ¢



Making the final decision

* When we need to give a point-wise prediction we could take the
mean of the predictive distribution

u(x,)



Squared-exponential kernel

* Very smooth
 [is the characteristic length-scale

* Each dimension could have its own lenght-

scale (ARD)
Squared-exponential kernel
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Matérn class kernels

* ¥ = oo |leads to a squared-exponential
kernel
21—v

* v determines the smoothness k(x,,x,) = (
: P47 T (p)
* [ is the length-scale

v
m”xp _xq”) K <m”xp _xq”>
[ M [

Realizations without noise

Matern kernel (1= 1) Materne kernel (/=1)
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Periodic kernel

* p determines the period

* [ is the length-scale
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Periodic kernel (I =0.7)
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Generating covariance functions

* There are a lot of different kernels

e Kernels can be combined
A sum of two kernels is a valid kernel

* A product of two kernels is a valid kernel
* We could multiply each kernel with the process variance af2



Model selection (training)

* The model here will be the mean m(x) and the covariance function
k(x,x"), along with their hyperparameters 6

* Model selction could give an interpretation of the data

* Bayesian model selection
* Maximum likelihood type-Il approximation

* Crossvalidation



General Bayesian model selection

_ p(y|X,w,H;)p(w|0, H;)

p(w|y,X,9,7—[)
l p(le'G’}[l)
p(yIX, 0, H;)p(0|H;)
p(9|y1x'}[) —
l p(le’}[l)
X, H:)o(H;
AR _pYIX Hp(H)

p(yIX)



Bayesian model selection

(t ra | n | n g) penalty for model
complexity
1 S 1 5 n
logp(¥1X,8,3;) = —Sy(K+ oy )"y — Slog|K + o7 1] — 7 log(2m)
data fit
Hyperparameter selection with the marginal likelihood
wol= " data fit S ""_'_'____;__'___
————— model complexity | /,,-"
. . marginal likelihood | /‘/"
* Each evidence evaluation 30| = Ztwel e
costs 0(n?) (matrix inversion) 32| o
. = 101 P |
* Numerically stable =S g |
. : 8 0T
implementation of the 5 I
. T 40 femem e m e |
equation ([1], page 19.) s | T o
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Bayesian model selection (training)

Hyperparameter selection with the marginal likelihood
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Bayesian model selection (training)
* 15 training datapoints

, . . . ; = 24, 2_
Odr?divanje hiperparametara pomoc¢u marginalne verodostojnosti Aposteriorna raspodela (1=1.0425; o:=1; 0| =0.034891)
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Bayesian model selection (training)

e 15 training datapoints

Odrgdivanje hiperparametara pomoc¢u marginalne verodostojnosti
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Bayesian model selection (training)
* 15 training datapoints

Aposteriorna raspodela (1=0.064; of=1; arzl=1e-06)
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Bayesian model selection (training)

* 60 training datapoints

Hyperparameter selection with marginal likelihood

O  marginal likelihood
X true parameters
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Bayesian model selection (training)

 Gradient descent (implementation trick: learn log(-) of parameters)

Hyperparameter selection with marginal likelihood
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Crossvalidation

* We break the training set into the new training set and the validation set
* Or use k-fold crossvalidation

* Find the O and H; which have the best performance on the validation set
* Metrics

Ny
1
L(Xy, ¥y, 0,H;) = n_z (YZS;)m %9))
Vi=1
L(Xy, 5, 0,3) = -3, ~log p(,” 1%, ¥, X, 8, 3)
11 & (uff) yﬁ‘)) 1
= — —logo,” + B + —log 2m
Ny &t 2 202 2



Kernel design

* The Mauna Loa observatory dataset — monthly C 0O, concentration in Hawai

k(xp,%q) = kse(xp, x4)
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Figures taken from http://gpss.cc/gpss18/slides/Durrande2018.pdf



http://gpss.cc/gpss18/slides/Durrande2018.pdf

Kernel design

k(xp,%q) = ksg(%p, %q) + ksg (X, %)+ kper(xp, Xq) +kquapraric (xp, x4)
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Figure taken from http://gpss.cc/gpss18/slides/Durrande2018.pdf



http://gpss.cc/gpss18/slides/Durrande2018.pdf

Gaussian Processes for Regression

Load the training data D = (X, y)

Model selection — (m(x), k(x,x"), 6)

Calculate the posterior for the new input x,




What are some advantages of using Gaussian
Process Models vs Neural Networks?

Y7, Answer ) Follow 130 32 Request O1 <7y BB ¥ 24 oo
4 Answers
Yoshua Bengio, My lab has been one of the three that started the deep ®

learning approach, back in 2006, along with Hinton's...
Answered Apr 6, 2011

Iwould add the following to David Warde-Farley's excellent answers. An
advantage of Gaussian Processes is that, like other kernel methods, they can be
optimized exactly, given the values of their hyper-parameters (such as the
weight decay and the spread of a Gaussian kernel), and this often allows a fine
and precise trade-off between fitting the data and smoothing. On small datasets
they are very good because of this well-tuned smoothing and because they are
still computationally affordable. Thev are mv method of choice for small
regression datasets (less than 1000 or 2000 examples). On the other hand, if vou
want to capture a complicated function (with manv manyv ups and downs, i.e.,
not necessarily very smooth), then vou need a model that can scale to large
datasets and that can generalize non-locally (which kernel machines with
standard generic kernels, typically local, do not provide). Modern variants of
neural networks (so-called Deep Learning, Deep Learning) are more attractive
with respect to these two properties, so I would prefer them for larger datasets
where there is a lot of structure to be extracted from the data (the target function

is not smooth).

49 Tk views - View Upvoters



Sparse GPs

Figure taken from http://inverseprobability.com/talks/notes/deep-gaussian-processes.html



http://inverseprobability.com/talks/notes/deep-gaussian-processes.html

Sparse GPs

Figure taken from http://inverseprobability.com/talks/notes/deep-gaussian-processes.html


http://inverseprobability.com/talks/notes/deep-gaussian-processes.html

Deep GPs

p(y|x) = p(y|fs)p(£s |£1)p(£4|£5) p (3] £2)p(£2 |1 ) p (£ |x)

* DL revolution:
hierarchical learning

* Analytically intractable

* Variational approaches
are used

y=f4(:::§+£

plx) plu)

Figures taken from http://inverseprobability.com/talks/notes/deep-gaussian-processes.html



http://inverseprobability.com/talks/notes/deep-gaussian-processes.html

Some applications

* Bayesian optimization
* Tuning the Swiss Free Electron Laser
* Tuning Reinforcement Learning Hyperparameters

* Crowd counting from an image
* Geostatistics
* Modelling of facial expressions

* Learning a model of a dynamic system
* Applying model-based RL



Exact Gaussian Processes on a Million Data Points

Ke Alexander Wang'®  Geoff Pleiss'*  Jacob R. Gardner”

Stephen Tyree®

Kilian Q. Weinberger®

Andrew Gordon Wilson!

!Cornell University, *Uber Al Labs, “NVIDIA

Abstract

Gaussian processes (GPs) are flexible models
with state-of-the-art performance on many im-
pactful applications. However, computational
constraints with standard inference procedures
have limited exact GPs to problems with fewer
than about ten thousand training points, ne-
cessitating approximations for larger datasets.
In this paper. we develop a scalable approach
for exact GPs that leverages multi-GPU par-
allelization and methods like linear conjugate
gradients, accessing the kernel matrix only
through matrix multiplication. By partitioning
and distributing kernel matrix multiplies, we
demonstrate that an exact GP can be trained
on over a million points in 3 days using 8
GPUs and can compute predictive means and
variances in under a second using 1| GPU at
test time. Moreover, we perform the first-ever
comparison of exact GPs against state-of-the-
art scalable approximations on large-scale re-
gression datasets with 104 — 105 data points,
showing dramatic performance improvements.

1 INTRODUCTION

Gaussian processes (GPs) have seen great success in
many machine learning settings, such as black-box op-
timization {Snock et al., 2012), reinforcement learning
(Deisenroth and Rasmussen, 2011; Deisenroth et al.,
2015}, and time-series forecasting (Roberts et al., 2013).
These models offer several advantages — principled un-

rertainty renresentatinng modde] nriore that reomire little

with few observations; they also have great promise to
exploit the available information in increasingly large
datasets, especially when combined with expressive ker-
nels (Wilson and Adams, 2013) or hierarchical structure
(Wilson et al, 2012; Damianou and Lawrence, 2013;
Wilson et al., 2016a; Salimbeni and Deisenroth, 2017).

In practice, however. exact GP inference can be in-
tractable for large datasets, as it naively requires O(n*)
computations and (?(n*) storage for n training points
(Rasmussen and Williams, 2006). Many approximate
methods have been introduced to improve scalability, re-
lying on mixture-of-experts models (Deisenroth and Ng,
2015), inducing points (Snelson and Ghahramani, 2006;
Tiesias, 2009; Wilson and Nickisch, 2015; Gardner et al.,
2018b), random feature expansions (Rahimi and Recht,
2008: Le et al, 2013; Yang et al., 2015), or stochas-
tic variational optimization (Hensman et al., 2013, 2015;
Wilson et al., 2016b; Cheng and Boots, 2017; Salimbeni
et al., 2018). However, choosing a suitable scalable ap-
proach involves many design choices, such as numbers
of random features, types of features, and numbers and
locations of inducing points. Performance is often sensi-
tive to these choices and depends on the properties of a
given dataset. Due to the historical intractablity of train-
ing exact GPs on large datasets, it is an open guestion
how approximate methods compare to an exact approach
when much more data is available.

In this paper, we develop a methodology to scale ex-
act GP inference well beyond what has previously been
achieved: we train an exact Gaussian process an over
a million data points without approximations. Such a
result would be intractable with standard implementa-
tions, which rely on the Cholesky decomposition. The
scalability we demonstrate is made feasible through the



Where to begin?

e C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

»Beginners guide to GP for regression (1., 2., 4. briefly, 5.)

* http://gpss.cc/gpss18/program

»Gaussian Process and Uncertainty Quantification Summer School (video
lectures)

* https://deepbayes.ru/
» DL and Bayesian methods summer school, should have video lectures



http://gpss.cc/gpss18/program
https://deepbayes.ru/

Where to begin?

* http://inverseprobability.com/talks/notes/deep-gaussian-
processes.html

» Neil Lawrence on sparse GPs and deep GPs

* https://www.prowler.io/blog/sparse-gps-approximate-the-posterior-
not-the-model

»Blog about the trends in sparse GPs (has highlighted some important papers)

* A. Damianou, N. Lawrence, Deep Gaussian Processes, Proceedings of
the Sixteenth International Conference on Artificial Intelligence and
Statistics, PMLR 31:207-215, 2013.


http://inverseprobability.com/talks/notes/deep-gaussian-processes.html
https://www.prowler.io/blog/sparse-gps-approximate-the-posterior-not-the-model

Thank you for your attention!
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