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GCRF

Gaussian Conditional Random Fields for regression
Discriminative model

Advantages of GCRF:
Combination of models and spatio-temporal correlation
Additional information provided by structure
Learning coefficients α,β
not correlation matrix Σ and expectation µ
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GCRF

Figure: Graphical representation of dependencies expressed by GCRF



GCRF for
Classifica-
tion, Fast
Approxima-
tion, and

Applications

Andrija
Petrovic

Introduction
- GCRF

GCRFCB
Model
Inference
Learning
Fast
approximation
Results

GCRF-
GCRGBC
Results

Conclusion

References

GCRF

The generalized form of the GCRF is:

P(y |x ,α,β)= 1
Z(x,α,β)

exp
(∑N

i=1 A(α,yi ,xi )+
∑

i 6=j I (β,yi ,yj )
)

(1)

Two different feature functions are used: association
potential A(α, yi , x) to model relations between outputs yi
and corresponding input vector xi and interaction potential
I (β, yi , yj) to model pairwise relations between nodes.
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GCRF

The association potential is defined as:

A(α,yi ,xi )=−
∑K

k=1 αk(yi−Rk (xi ))
2 (2)

The interaction potential functions are defined as:

I (β,yi ,yj )=−
∑L

l=1
∑K

k=1 βlS
l
ij (yi−yj )

2 (3)

The canonical form of GCRF is:

P(y |x ,α,β)= 1

(2π)
N
2 |Σ|

1
2

exp(− 1
2 (y−µ)T Σ−1(y−µ)) (4)
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GCRFCB

One way of adapting GCRF to classification problem is by
approximating discrete outputs by suitably defining continuous
outputs. Namely, GCRF can provide dependence structure over
continuous variables which can be passed through sigmoid
function.

The model is applicable to classification problems with
undirected graphs, intractable for standard classification
CRFs.
Defining correlations directly between discrete outputs may
introduce unnecessary noise to the model.
In case that unstructured predictors are unreliable, which is
signaled by their large variance (diagonal elements in the
covariance matrix), it is simple to marginalize over latent
variable space and obtain better results.
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Representation

Figure: Graphical representation of GCRFCB
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Representation

The conditional probability distribution P(yi |zi ) is defined
as Bernoulli distribution:

P(yi |zi )=Ber(yi |σ(zi ))=σ(zi )
yi (1−σ(zi ))1−yi (5)

The joint distribution of outputs yi can be expressed as:

P(y1,y2,...,yN |z)=
∏N

i=1 σ(zi )
yi (1−σ(zi ))1−yi (6)

The conditional distribution P(z |x) is the same as in the
classical GCRF model and has canonical form defined by
multivariate Gaussian distribution.
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Representation

The joint distribution of continuous latent variables z and
outputs y is:

P(y ,z |x ,θ)=
∏N

i=1 σ(zi )
yi (1−σ(zi ))1−yi · 1

(2π)N/2|Σ(x,θ)|1/2

·exp(− 1
2 (z−µ(x,θ))T Σ(x ,θ)−1(z−µ(x,θ)))

(7)

where θ=(α1,...,αK ,β1,...,βL).

Two ways of inference and learning were considered in GCRFBC
model:

1 GCRFBCb - with conditional probability distribution
P(y |x ,θ), in which variables z are marginalized over, and

2 GCRFBCnb - with conditional probability distribution
P
(
y |x ,θ, µz

)
, in which variables z are substituted by their

expectations.
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Inference
Inference GCRFBCb

Due to conditional independence between nodes, it is
possible to obtain P(yi = 1|x ,θ).

P(yi |x ,θ)=
∫
z P(yi |z)P(z |x ,θ)dz (8)

P(yi=1|x ,θ)=
∫
z σ(zi )P(z |x ,θ)dz (9)

As a result of independence properties of the distribution,
it holds P(yi = 1|z) = P(yi = 1|zi ), and it is possible to
marginalize P(z |x ,θ) with respect to latent variables
z ′ = (z1, . . . , zi−1, zi+1, . . . , zN):

P(yi=1|x ,θ)=
∫
zi
σ(zi )(

∫
z′ P(z ′,zi |x ,θ)dz ′)dzi (10)

It holds:
P(yi=1|x ,θ)=

∫ +∞
−∞ σ(zi )N (zi |µi ,σ2i )dzi (11)
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Inference
Inference GCRFBCnb

To predict y , it is necessary to evaluate posterior maximum
of latent variable zmax = argmax

z
P(z |x ,θ), which is

straightforward due to normal form of GCRF. Therefore, it
holds zmax = µz,i . The conditional distribution
P(yi = 1|x ,µz,i ,θ) can be expressed as:

P(yi=1|x ,µz ,θ)=σ(µz,i )= 1
1+exp(−µz,i )

(12)

where µz,i is expectation of latent variable zi .
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Learning
Learning GCRFBCb

Evaluation of the conditional log likelihood is intractable,
since latent variables cannot be analytically marginalized.
The conditional log likelihood is expressed as:

L(Y |X ,θ)=log(
∫
Z P(Y ,Z |X ,θ)dZ)=

∑M
j=1 log

(∫
zj
P(yj ,zj |xj ,θ)dzj

)
=
∑M

j=1 Lj (yj |xj ,θ)

(13)

Lj (yj |xj ,θ)=log
∫
zj

∏N
i=1 σ(zji )

yji (1−σ(zji ))
1−yji

exp(− 1
2 (zj−µj )T Σ−1

j
(zj−µj ))

(2π)N/2|Σj |1/2
dzj

(14)
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Learning
Learning GCRFBCb

One way to approximate integral in conditional log
likelihood is by local variational approximation. Lower
bound for sigmoid function, can be expressed as:

σ(x)>σ(ξ) exp{(x−ξ)/2−λ(ξ)(x2−ξ2)} (15)

where λ(ξ)=− 1
2ξ ·[σ(ξ)− 1

2 ] and ξ is a variational parameter.

Figure: The sigmoid function with its lower bound
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Learning
Learning GCRFBCb

This approximation can be applied to the model, such that:

P(yj ,zj |xj ,θ)=P(yj |zj )P(zj |xj ,θ)≥P(yj ,zj |xj ,θ,ξj ) (16)

P(yj ,zj |xj ,θ,ξj )=
∏N

i=1 σ(ξji ) exp

(
zjiyji−

zji+ξji
2 −λ(ξji )(z2ji−ξ

2
ji )

)
·

1

(2π)N/2|Σj |1/2
exp
(
− 1

2 (zj−µj )
T Σ−1j (zj−µj )

) (17)

The lower bound of conditional log likelihood
L(yj |xj ,θ, ξj ) is defined as:

Lj (yj |xj ,θ,ξj )=log P(yj |xj ,θ,ξj )=
∑N

i=1

(
log σ(ξji )−

ξji
2 +λ(ξji )ξ

2
ji

)
−

1
2µ

T
j Σ−1j µj +

1
2mT

j S−1j mj +
1
2 log |Sj |

(18)
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Learning
Learning GCRFBCnb

Learning in GCRFBCnb model is simpler compared to the
GCRFBCb algorithm, because instead of marginalization,
the mode of posterior distribution of continuous latent
variable z is evaluated directly, so there is no need for
approximation technique. The conditional log likelihood
can be expressed as:

L(Y |X ,θ,µ)=log P(Y |X ,θ,µ)

=
∑M

j=1
∑N

i=1 log P(yji |xj ,θ,µji )

=
∑M

j=1
∑N

i=1 Lji (yji |xj ,θ,µji )

(19)

Lji (yji |xj ,θ,µji )=yji log σ(µji )+(1−yji ) log(1−σ(µji )) (20)



GCRF for
Classifica-
tion, Fast
Approxima-
tion, and

Applications

Andrija
Petrovic

Introduction
- GCRF

GCRFCB
Model
Inference
Learning
Fast
approximation
Results

GCRF-
GCRGBC
Results

Conclusion

References

GCRFBCb - Fast approximation

Due to large number of variational parameters it is
necessary to decrease memory and computational cost.
However, in the case of GCRFBCb, memory complexity
during training is O(M) due to dependency of variational
parameters on the number of instances. Computational
complexity is also higher – O(TMN3), which can also be
reduced to O(TMN2) in case of sparse precision matrix.
Decreasing costs by decreasing number of variational
parameters
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GCRFBCb - Fast approximation
Learning

Partial derivatives of conditional log likelihood with respect
to ξji are:

∂Lj (yj |xj ,θ,ξj )

∂ξji
=− 1

2Tr
(

2Sj
∂Λj
∂ξji

)
−
[
2(yj− 1

2 I)Sj
∂Λj
∂ξji

Sj

]
S−1j mj

+mT
j
∂Λj
∂ξji

mj+
∑N

i=1

((
1

σ(ξji )
+ 1

2 ξji

)
∂σ(ξji )

∂ξji
+ 1

2(σ(ξji )− 3
4)

)
(21)

One way to solve this it to cluster ξji and use group
representative as approximation to all variational
parameters in group



GCRF for
Classifica-
tion, Fast
Approxima-
tion, and

Applications

Andrija
Petrovic

Introduction
- GCRF

GCRFCB
Model
Inference
Learning
Fast
approximation
Results

GCRF-
GCRGBC
Results

Conclusion

References

GCRFBCb - Fast approximation
Learning

In each iteration of optimization for each instance and
node expectation of P(zj |xj ,θ) is evaluated for current
value of θ
The obtained µji or σ(µji ) are clustered
Group representative is used for gradient evaluation
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Results

Figure: Gene functional classification
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Results

Figure: Semantic scene classification
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Results

Figure: Pediatric readmission
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GCRF-GCRFBC

If a dataset is sparse, GCRF cannot be directly applied
since it cannot handle missing values and handling them in
a naive way (e.g., substituting them by 0 in case of average
vehicle speed) leads to poor performance.
The learning procedure is straightforward. Firstly, all
instances and corresponding nodes are used for learning
parameters of binary classification algorithm (GCRFBCb or
GCRFBCnb). Subsequently, for each instance only nodes
with non-null values of outputs are used in maximization of
GCRF log likelihood with respect to the parameters α and
β.
It is important to emphasize that structure of GCRF during
learning and inference is changing with respect to the
nodes with non-null values of variables.
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GCRF-GCRFBC

Figure: Graphical representation of classification-regression
methodology expressed by GCRFBC and GCRF models
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Results
Highway TSE

Figure: Map of highways in Serbia - red marked toll stations were
used as nodes in GCRFBC model
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Results
Highway TSE

Table: Prediction performance and total computation time of GCRF
and unstructured predictors for average moving velocity when null

and non null values are not classified

Nǐs - Belgrade Belgrade - Adaševci
No. Model R2 Computation time in minutes R2 Computation time in minutes
1 GCRF 0.509 227.134 0.947 19.272
2 Ridge 0.449 5.148 0.928 0.391
3 Lasso 0.452 3.204 0.928 0.328
4 NN -0.060 25.179 0.891 8.310
5 RF 0.507 184.720 0.946 7.378



GCRF for
Classifica-
tion, Fast
Approxima-
tion, and

Applications

Andrija
Petrovic

Introduction
- GCRF

GCRFCB
Model
Inference
Learning
Fast
approximation
Results

GCRF-
GCRGBC
Results

Conclusion

References

Results
Highway TSE

Table: Prediction performance and total computation time of
GCRFBC and GCRF for classification of null versus non null values

and regression of average moving velocity

Classification of null values
Nǐs - Belgrade Belgrade - Adaševci

No. Model AUC/R2 Computation time in minutes AUC/R2 Computation time in minutes
1 GCRFBCnb 0.893 262.799 0.648 49.518
2 GCRFBCb 0.878 465.683 0.999 89.949
4 Ridge 0.853 0.216 0.995 0.015
5 Lasso 0.854 1.842 0.995 0.218
6 NN 0.832 249.933 0.997 47.181
7 RF 0.858 4.437 0.998 0.581

Regression of average moving velocity
1 GCRF 0.859 175.458 0.983 14.136
2 Ridge 0.826 3.891 0.970 0.295
3 Lasso 0.828 2.421 0.971 0.247
4 NN 0.796 19.031 0.961 6.271
5 RF 0.834 139.622 0.980 5.568
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Conclusion

Structured classification and regression algorithms have
better prediction performance compared to the
unstructured predictors, meaning that the variable
dependence structure can be exploited for better prediction
Both GCRFBCb and GCRFBCnb models have better
prediction performance compared to the unstructured
predictors
Due to high memory and computational complexity of
GCRFBCb compared to GCRFBCnb, it is reasonable to use
GCRFBCnb or fast GCRFBCb.
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