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We're going from an information age to a knowledge age



Prediction of protein functions
and interactions

using machine learning algorithms



• What are proteins?

• Structure, function, sequence and interactions

• Protein-protein interaction prediction problem

• Important and challenging?

• PPI algorithm evaluation

• Our proteome-wide approach 

• Our class-specific approaches (IDPs, TRFs)

• Protein function prediction problem

• Ontological annotation of proteins

• Gene ontologies and CAFA challenge

• Our proteome-wide HPO prediction

Outline



What are Proteins?
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Protein Sequence

UniProt Universal Protein resource, a central repository of 
protein data

120,243,849 sequence entries

Sequence  =  String
• 20 amino acids; 20 symbols
{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,

W,Y}
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FILDKSGSVLHHWNEIYYFVEQLAHKFISPQLRMSFIVFSTRGTTL
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ICAGESFQVVVRGNGFRHARNVDRVLCSFKINDSVTLNEKPFSVED
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Molecular Interactions

IntAct - database system and analysis tools for molecular interactions

HIPPIE - Human Integrated Protein-Protein Interaction rEference

340,630 human PPIs
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Protein protein interaction (PPI) network  =  Graph
• Node = Protein
• Link = Bind or carry out same function



Protein Protein Interaction (PPI) 
prediction problem



Importance of PPI prediction

Proteins perform their functions by interacting with 

other proteins

Studies:

1. In silico - in computer chips

2. In vitro (in glass) – in cells, controlled env.

3. In vivo – in living organisms

Computer Aided Drug Discovery

Wet lab experiments:

• Costly and labor-intensive

• Biases and limited coverage

• Limitations of equipment resolution

• Incomplete findings

Candidates



Challenge of PPI prediction

>650,000 estimated Human PPIs

~340,000 human PPIs in HIPPIE DB

21,946 protein-coding human genes

240,802,485 possible human protein pairs

Complex data: PPI, co-expression, co-occurrence, GOs, 

Literature, Disease variants, etc.

• Heterogeneous

• Incomplete

Methods based on domain knowledge => challenge

Sequence representation is 

universal and proteome 

wide available



Evaluation of PPI prediction algorithm

Evaluation

• C1 test

• C2 test

• C3 test

Benchmark sets Human_Park [Park and Marcotte, 2012]

• <40% sequence similarity

• 40 human train sets ~ 28,000 pairs

• 40 C1 test sets ~ 3,000 pairs

• 40 C2 test sets ~ 2,000 pairs

• 40 C3 test sets ~ 2,000 pairs

• Negative protein pairs were randomly sampled

• Balanced sets
Symmetric prediction 

p(AB) = p(BA)

A,B proteins

Three  test classes of difficulties Accuracy

TRAIN

TEST

C1 C2 C3

The most difficult



Human PPI prediction
Proteome-wide approach



PPI modeling

PPI modeling process

Select data

Transform into numbers

ML PPI 
Classifier

0.01683637
0.00740800
0.00673454
0.01010182
0.00202036
0.02020364
0.00942836
0.00740800
...

Coding of PPs into feature vectors
SOS1_HUMAN GRB2_HUMAN

GRB2_HUMAN CBL_HUMAN

MYC_HUMAN MAX_HUMAN

JUN_HUMAN FOS_HUMAN

RFA2_HUMAN RFA1_HUMAN

0.017657 0.007270 0.006751 0.006751 ……..

0.013877 0.013106 0.003084 0.008866 ……..

0.007802 0.008173 0.008916 0.008916 ……..

0.012708 0.011230 0.006206 0.009161 ……..

0.012578 0.005296 0.007944 0.011916 ……..

Mathematical 
function

Coding of proteins into feature vectors

(A,B) Ts
(B,A) Ts

Concatenation

MDKNELVQKAKMLAEQAERYDDMAACMKSVTE…

0.810741

Physicochemical 
encoding

AA Composition

0.197
0.127
0.370
-0.106
0.469
...



PCAACC Protein Encoding
Based on
• protein sequences
• amino acid physicochemical 

properties

Principal component 

analysis (PCA) of the all 531 
features from AAIndex

database

Extract first two components 

as a new AA features

Defining 2 new amino acid 

(AA) features 

Transform sequence into 2-dim vector using new 

AA features

Generate 40-dim vectors using 

autocrosscorrelation function with a lag=10:

For each protein from interaction pair

Calculate 20-dim amino acid composition 

(AAC) vector and combine it with ACF vector:

Calculating PCAACC feature vector for the 

protein pair

Concatenate both vectors to obtain final

120-dim feature vector
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PSSMC Protein Encoding
Position specific scoring matrix (PSSM)

• representation of evolutionary profiles using multiple sequence alignments  of protein families

• determines the frequency of substitution of each amino acid at specific position in protein 

family - composition

PSSM features

3..1,20..1,
*

 ki
MN

n
PSSM k

k
i

i
AACk

is number of occurrences of i-th amino acid K-tuple
in N x M dimensional PSSM matrix 

k
in

20 dim 400 dim 8000 dim

PCA dimension reduction on 
set of proteins

50 dim 50 dim

Generating PSSMC feature vector for 
protein pair

For each protein in pair find its 
120-dim feature vector

Concatenate both vectors

240-dim feature vector

Interaction pair

20 dim

120 dim protein feature vector

MSVNISTAGSFTES



GraphM Protein Encoding

Generating GraphM feature vector 
for protein pair (C1 class)

For each protein in pair find its 
20-dim feature vector

Concatenate both vectors

40-dim feature vector

Interaction pair

Calculating GraphM protein features

Construct undirected graph 
from positive interactions

Calculate graph metrics for 
each vertex/protein

20-dim feature 
vector

Graph metrics 

used to encode 

the proteins

Training set of 
interactions

protein = vertex

• Components

• Constraint

• Coreness

• Count_triangles

• Degree

• Eccentricity

• Ego

• Eigen_centrality

• Knn

• Local_scan

• Max_cardinality

• Page_rank

• Strength

• Alpha_centrality

• Authority_score

• Betweenness

• Centrality_score

• Closeness

• Cluster_fast_greedy

• Cluster_walktrap



GraphM Protein Encoding

eccentricity.b

eccentricity.a

clusterfastgreedy.a

maxcardinality.a

maxcardinality.b

clusterfastgreedy.b

clusterwalktrap.b

clusterwalktrap.a

closeness.a

authorityscore.b

closeness.b

authorityscore.a

centrclo.b

centrclo.a

coreness.b

coreness.a

betweenness.b

betweenness.a

localscan.a

knn.a

knn.b

localscan.b

pagerank.a

pagerank.b

constraint.b

degree.a

degree.b

constraint.a

Variable Importances

PPI graph measures/metrics are used to encode the proteins

•Authorityscore Kleinberg’s authority centrality scores
•Betweenness Vertex betweenness centrality
•Centrclo Centrality score
•Closeness Closeness centrality of vertices
•Clusterfastgreedy Community structure via greedy 

optimization of modularity
•Clusterwalktrap Community structure via short random walks

•Constraint Burt’s constraint
•Coreness K-core decomposition of graphs
•Degree Degree distribution of the vertices
•Eccentricity Eccentricity of the vertices in a graph
•Knn Average nearest neighbor degree
•Localscan Local scan statistics
•Maxcardinality Maximum cardinality search
•Pagerank The Page Rank algorithm



Machine Learning
• Backward distributed feature selection driven by genetic algorithm
• Hyper parameter optimization by random/grid search
• Model selection

Distributed 

Random 

Forest

Gradient 

Boosted 

Machine

Generali-

zed Linear 

Model

Deep 

Learning

PCAACC Model 1 Model 2 Model 3 Model 4

GraphM Model 5 Model 6 Model 7 Model 8

PSSMC Model 9 Model 10 Model 11 Model 12

ALL Model 13 Model 14 Model 15 Model 16

ML models
Algorithm

Fe
at

u
re

 g
ro

u
p

MuFEnsPPI final model = Ensemble of  N<16 models
(Multi-Feature Ensemble PPI model) 



Comparison to other methods
Six state-of-the-art methods based  

on sequence and evolutionary 

profiles for PPI prediction:

• M1 [Martin et al., 2005]

• M2 [Guo et al., 2008]

• M3 [Pitre et al., 2008]

• M4 [Shen et al., 2007]

• M5 [Park & Markotte, 2012]

• M6 [Hamp & Rost, 2015]

Performance statistics on 40 YEAST C1 class and 40 HUMAN C1, C2, C3 
classes test benchmark Human_Park sets; AUC - Area under the receiver 
operating characteristic curve

Method

AUC

(HUMAN C1)

AUC

(YEAST C1)

AUC

(HUMAN C2)

AUC

(HUMAN C3)

M1 0.81 ± 0.01 0.82 ± 0.01 0.61 ± 0.01 0.58 ± 0.03

M2 0.77 ± 0.01 0.76 ± 0.02 0.57 ± 0.02 0.53 ± 0.02

M3 0.77 ± 0.01 0.75 ± 0.02 0.64 ± 0.01 0.59 ± 0.02

M4 0.64 ± 0.01 0.61 ± 0.01 0.55 ± 0.01 0.50 ± 0.00

M5 0.85 ± 0.01 0.84 ± 0.01 0.60 ± 0.01 0.58 ± 0.02

M6 0.87 ± 0.01 0.87 ± 0.02 0.69 ± 0.01 0.67 ± 0.02

MuFEns 0.88 ± 0.01 0.90 ± 0.01 0.69 ± 0.01 0.67 ± 0.01

Comparison of prediction 
efficacy between different ML 
algorithms on HUMAN C1 test 
set using MuFEns model

0.855

0.86

0.865

0.87

0.875

0.88

RF GBM GLM DL ENS

0.866

0.863

0.869 0.869

0.878

A
U

C



Human_MuFEns Learning Set
Human PPIs set Human_MuFEns: 196,000 PPIs; 11045 Proteins

• Exclusion of >40% similar sequences and low-trust 

• Negative protein pairs were randomly sampled

• Balanced sets

• 10 random splits to Train sets and C1/C2/C3   with ratio 10:1
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120000

140000

160000

180000

200000

Proteins PPIs

7033
24718

11045

196071

Human_Park Human_MuFEns

Increase of numbers of proteins and PPIs 
from Human_Park to Human_MuFEns set

Increase of MuFEnsPPI model prediction 
performances (AUC) on new PPI test sets
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Human_MuFEns Model

Feature groups importances for each class 

C1 C2 C3

AUROC 0.922 ± 0.008 0.846 ± 0.006 0.721 ± 0.005

AUPR 0.920 ± 0.009 0.845 ± 0.007 0.643 ± 0.007

ACC 0.846 ± 0.010 0.763 ± 0.007 0.679 ± 0.006

F 0.846 ± 0.010 0.752 ± 0.008 0.716 ± 0.008

Precision 0.845 ± 0.013 0.788 ± 0.012 0.642 ± 0.011

Specificity 0.844 ± 0.018 0.807 ± 0.018 0.547 ± 0.015

Recall 0.848 ± 0.024 0.719 ± 0.020 0.810 ± 0.018

MCC 0.692 ± 0.016 0.528 ± 0.013 0.371 ± 0.012

Prediction performances of MuFEnsPPI model on 
new PPI datasets

Computing times for feature 
calculation and ML training
Intel(R) Xeon(R) CPU E3-1230 
@ 3.40GHz. 8 CPUs. 64GB RAM 

Feature calculation

GraphM 14 min

PSSMC 4 h 20 min

PCAACC 4 min

ML training

RF 11 min

GBM 1 h 14 min

GLM 2 min

DL 1 h 23 min

GraphM

PSSMC

PCAACC

0

0.2

0.4

0.6

0.8

1

C1

C2

C3

GraphM

PSSMC

PCAACC

HP-GAS
software

Further improvement



HP-GAS Model
Feature-engineering based on Genetic Algorithm

Features Sequence Evolutionary Graph

Original 120 40 42

Unary 720 240 252

Selected Unary 6 54 17

Binary 23625 13113 5133

Selected Binary 67 81 110

GA input 193 175 169

GA filtered 121 60 62

Operators:
B={sin(x), ex, 1/x, log(x), x2, √x}
U={+ , × , /}

Final feature space constitution



HP-GAS Model
GA-STACK ensembling algorithm based on Genetic Algorithm

• Set of base classifiers: random hyper-parameter combinations for every ML algorithm
• The fitness function of GA is AUC on the test set using training by the GLM supervised meta-learning 

algorithm which uses the predictions from models represented in individual as the features
• Crossover and mutation are bitwise operations on the ‘presence’ of the models in the individual

Performances of HP-GAS in leave-one step-out experiments

Sumonja N, Gemovic B, Veljkovic N, Perovic V. Automated feature engineering improves prediction of 
protein–protein interactions. Amino Acids. 2019; doi:10.1007/s00726-019-02756-9. (IF=2.5)

• Automatic feature 
generation and selection

• Feature group separation
• Meta-learner GA-STACK

AUC 0.928 ± 0.001

AUPRC 0.927 ± 0.002

ACC 0.853 ± 0.002

F score 0.853 ± 0.001

MCC 0.707 ± 0.004

Performances of HP-GAS on 
Human_MuFEns data sets



HP-GAS - https://www.vin.bg.ac.rs/180/tools/HP-GAS.php

Sumonja N, Gemovic B, Veljkovic N, Perovic V. Automated feature engineering improves prediction of 
protein–protein interactions. Amino Acids. 2019; doi:10.1007/s00726-019-02756-9. (IF=2.5)

• Standalone software tool 
for human PPI prediction

• Based on the HP-GAS model

• Implemented in JAVA
language

• Human_MuFEns set was used 
as the training set

• Input: protein pairs given 
with the UniProt identifiers or 
entry names

• Output: probabilities as the 
predicting values of 
interactions

• Time efficient tool! Prediction 
time for a set of 1.000.000
protein pairs is ~10 min

Argentina
Canada
China
Europe
Germany
Russian Federation
Serbia
Ukraine
United States



Human PPI prediction
Class-speciffic approach



Human Intrinsically Disordered 
Protein Interactions prediction



collagen triple-helix

α helical coiled coil

β-solenoid

α/β solenoid

α-solenoid

β trefoil / β hairpins

anti-parallel β layer

box

TIM-barrel

β-barrel / β hairpins

β-trefoil

β-propeller

α/β prism

α-barrel

α/β barrel

α/β propeller

α/β trefoil

aligned prism

α-beads

β-beads

α/β-beads

β sandwich beads

α/β sandwich beads

RepeatsDB

Tandem Repeat Proteins

Paladin et al , Nucleic Acids Res. 2016



IDPpi_tool - Human Intrinsically Disordered Protein Interactions

DisProt 7.0 (2018): database of manually curated
intrinsically disordered regions:
• 803 IDP proteins
• 2167 regions
• 245 human IDPs

Piovesan et al., Nucleic Acids Res, 2017

Density curves for the interactions in the HIPPIE database
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Perovic et al , Sci Rep. 2018

Intrinsically Disordered Proteins

• The lack of a fixed tertiary structure

• ~33% IDPs biologically functional in Eukaryota

• Biased amino acid composition and low 
sequence complexity

• low proportions of bulky hydrophobic 
amino acids

• high proportions of charged and 
hydrophilic amino acids

• Functionally important: involved in the 
regulation of key biological processes via 
binding to significantly augmented protein 
partners. 



IDPpi_tool - Human Intrinsically Disordered Protein Interactions

Process of building data sets: train 
and class C2 test

Perovic et al , Sci Rep. 2018

PPIs 
Train (disorder x order1), order1O1

Test   (disorder x order2), order2O2

O1  O2 = 

IDPs PPI

HIPPIE

Redundancy 

reduction (40%)

Confidence 

level >0.40

IDP PPI

training set

Negative 

sampling

IDP PPI

test set

Negative 

sampling

P0: 24,994

P1: 20,126

P2: 19,837

P2.1: 17,915

P3: 35,830

P2.2: 1,922

P4: 3,844

D: 237  

O: 7,557

D: 237  

O: 5,805

D: 228  

O: 5,761

D: 228  

O: 5,184

D: 228  

O: 577

Random 10-fold split on orders

10 train-test sets



Chou K.C.(2001). Prediction of protein cellular attributes using pseudo-amino-acid-composition.

PROTEINS: Structure, Function, and Genetics 43, 246255.

Protein: [R1R2R3...RL] → PseAAC vector: (p1,p2,...,p20,p20+1,...,p20+λ)
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IDPs representation – PAACDC features

Method AUC AUPRC ACC F MCC

IDPI 0.746 ± 0.017 0.734 ± 0.020 0.670 ± 0.015 0.633 ± 0.021 0.348 ± 0.028

M1 0.688 ± 0.017 0.697 ± 0.018 0.638 ± 0.013 0.590 ± 0.022 0.285 ± 0.025

M2 0.637 ± 0.014 0.613 ± 0.012 0.593 ± 0.010 0.553 ± 0.019 0.190 ± 0.021

M3 0.627 ± 0.011 0.643 ± 0.014 0.599 ± 0.008 0.518 ± 0.013 0.211 ± 0.017

Protein 
sequence

Dipepdide
Composition (DC) 400 dimensional 

feature vector

70 dimensional 
feature vectorPseudo amino acid 

composition (PAAC)

470 dimensional 
feature vectorConcatenation

PAACDC 
encoding

PAAC is using five disorder characteristic propensity scales:

• TOP-IDP scale (ranks residues by the their propensity to endorse order or disorder)

• B-values (flexibility parameters for each residue surrounded by two inflexible neighbours)

• FoldUnfold scale (capacity of amino acid residues to form a sufficient number of contacts in a globular state)

• DisProt scale (statistical difference in the residue compositions of ordered proteins and IDPs)

• Net charge scale

Perovic et al., Sci Rep, 2018

Comparison of the prediction 
performances between our 
proposed method, IDPI and 
other state-of-the-art 
sequence based methods



IDPpi_tool performances
10N 100N

AUC AUPRC ACC AUC AUPRC ACC

IDP-PPI 0.745 0.237 0.74 0.748 0.05 0.757

M1 0.691 0.217 0.724 0.692 0.048 0.737

M2 0.645 0.14 0.648 0.646 0.025 0.657

M3 0.624 0.163 0.74 0.624 0.032 0.763
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Perovic et al., Sci Rep, 2018

Evaluation using a negative 
subsets randomly chosen from 
the negative set, where N is 
the size of the positive set

Comparison of predictive performances through (a) ROC curves and (b) precision/recall plots, across 5 IDP C2
test sets using  corresponding  5 IDPs and 5 general human PPI train sets.

(a) (b)



IDPpi_tool – new interactor identification

Perovic V, Sumonja N, Marsh L, Radovanovic S, Vukicevic M, Roberts S, Veljkovic N. IDPpi: Protein-Protein 
Interaction Analyses of Human Intrinsically Disordered Proteins. Scientific Reports. 2018; doi: 
10.1038/s41598-018-28815-x. (IF=4.5)

Example: Interactome map of Brain acid-soluble protein-1 (BASP1)

• Transcriptional cofactor
• Intrinsically disordered structure
• Silenced in several tumor types

Predicted interaction between BASP1 and progesterone 
receptor, PRGR: In vivo binding confirmation



IDPpi_tool - http://www.vin.bg.ac.rs/180/tools/dispred.php

IDPpi_tool Web Interface (a) Front page of IDPpi_tool web application where users can input the 
protein sequences in a FASTA format and to choose either automatic combination in pairs or to add 
protein pairs of interest to the input information. (b) IDPpi_tool results page.

(a) (b)

Time efficient tool!
Prediction time for 
100 protein pairs is 
less than a second 



Prediction of Transcriptional 
Regulation Interactions



Performances in prediction efficiency

TRI_tool Prediction of Transcriptional Regulation Interactions

Datasets and models

1515 proteins involved in human transcriptional regulation  (UniProt)
12244 mutual interactions  (HIPPIE - Human Integrated Protein-Protein Interaction 

rEference)

Perovic et al., Bioinformatics, 2017

Transcriptional regulation (TR) is a complex process which controls the cellular gene 
expression and among the key processes in all serious human diseases, including 
cancer.
It is important to identify pharmacologically relevant PPIs.
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Comparison between TRI_tool and 
two state-of-the-art sequence-
based methods:

M1 (Guo et al., 2008)

M2 (Pitre et al., 2008)



TRI_tool – web service
Prediction of Transcriptional Regulation Interactions

In vivo binding 
confirmation.
Co-immunoprecipitation of 
WT1 and CDK9 in human 
leukemia cell line K562

Perovic V, Sumonja N, Gemovic B, Toska E, Roberts SG, Veljkovic N. TRI_tool: a web-tool for prediction of 
protein-protein interactions in human transcriptional regulation. Bioinformatics. 2017; 33(2):289-91. (IF=4.5)

Effective in dealing with large number of sequences and outperforms 
some of the mostly used sequence-based methods in terms of computational 
efficacy and prediction potential.
- 100 interactions in less then a second!

http://www.vin.bg.ac.rs/180/tools/tfpred.php

I IgG CDK9

WT1

I IgG

CDK9

WT1

Identification of a new interacting partner for Wilm’s tumor protein (WT1):  
Anti-cancer target cyclin-dependent kinase (CDK9)

TRI_tool predicted WT1-CDK9 interaction



TRI_tool - http://www.vin.bg.ac.rs/180/tools/tfpred.php

TRI_tool Web Interface (A) Front page of TRI_tool web application where users can input the protein sequences in a 
FASTA format and to choose either automatic combination in pairs or to add protein pairs of interest to the input 
information. (B) TRI_tool results page.

Perovic et al., Bioinformatics, 2017



Protein function prediction problem



Protein

Ontological annotation of proteins

Assign/predict subgraph

Direct acyclic graph (DAG) of annotations

Challenges

• Inconsistent experiments – in vitro, in vivo

• Biased and incomplete biological data

Why this matters

• Understand molecular mechanisms and cellular processes

• Mutation assessment, drug design…

Multi-label classification problem



Gene Ontology (GO) is a term that describes gene product in three 
domains (across all spieces):
1. Molecular function - molecular activities of gene products
2. Cellular component - where gene products are active
3. Biological process - pathways and larger processes made up of the 

activities of multiple gene products.
Vocabulary of GOs is structured in a graph

Gene Ontologies (GO)



Critical Assessment of protein Function Annotation algorithms 
(CAFA) is an experiment designed to provide a large-scale assessment of 
computational methods dedicated to predicting protein function, using a time 
challenge.

Proteins are grouped by species.

Jiang Y., Oron T., Clarck W.T. et al. An expanded evaluation of protein function prediction 
methods shows an improvement in accuracy. Genome Biol. 2016;17(1):184. (IF=13.2)

The CAFA Challenge



The CAFA Challenge - Prediction model

Algorithm

Proteins and 
interactions

PseAAC
Transform

Data Mining 
classification

PPI 
Classifier

Generating the PPI-based Classifier 

Assigning GOs to protein

Protein 1 P1

Protein 2 P2

Protein 3 P3

…. ….

Protein N PN

ISM d3 
Classifier

Protein X

Threshold
Filter

(first K)

Protein 1

…..

Protein K

Parallelized Parallelized

DINGO

Parallelized

GO 1

GO 2

…..

GO M

P-value
Filter

20 species, total ~550K proteins    
Human organism: 20K proteins → 400M pairs: PPI based model → (x140) 56B numbers ~ 0.45TB

ISM d3 based → (x8000) 3.2T numbers ~ 25TB

Big Data in ‘Assigning GOs’ step

Davidovic R, Perovic V, Gemovic B and Veljkovic N. (2019) DiNGO: standalone application for 
Gene Ontology and Human Phenotype Ontology term enrichment analysis. Bioinformatics. In 
submission.
DiNGO software page: https://www.vin.bg.ac.rs/180/tools/DiNGO.php

Zhou N., Jiang Y., Nguyen H., Hamid M. et al. The CAFA challenge reports improved protein 
function prediction and new functional annotations for hundreds of genes through 
experimental screens. Genome Biol. 2019; Accepted. (IF=13.2)



The Human Phenotype Ontology (HPO)

• Difficult to analyze a patient 
information by computerized 
approaches.

• Phenotypic information -
unstructured clinical notes 
(traditionally)

• HPO standardizes clinical feature 
descriptions, in a way that is 
consistent and computer-readable

HPO DAG Phenotypic 
abnormality

Abnormality of 
the eye

Abnormal eye 
morphology

Shivering

Abnormal eye 
physiology

Constitutional 
symptom

Asthenia

Database of phenotypic abnormalities in human diseases

Subontology Terms Proteins

Phenotypic abnormality 6953 3645

Mode of Inheritance 21 3333

Clinical modifier 22 1263

Aging/Mortality 6 226

HPO Mar-2018
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Not many tools for HPO annotation prediction

HEMDAG – M2

• Hierarchical top down (HTD) and 
True path rule (TPR) propagation 
algorithms

• SVM and RANKS ML methods
• Features:

• Network data (PPI, co-expression, co-
occurrence, etc.) from BioGRID and 
STRING

• Gene Ontology (GO)
• OMIM annotations

Kahanda et al., F1000Research, 2015

PHENOstruct – M1

• Based on structured support vector 
machine (SSVM)

• Features:
• Network data (PPI, co-expression, co-

occurrence, etc.) from BioGRID, STRING 
and GeneMANIA

• Gene Ontology (GO)
• Literature
• Disease variants (UniProt)

Notaro et al., BMC Bioinformatics, 2017 



HPO prediction
Proteome-wide approach



MuFEnsHPO model for HPO prediction

Protein 

sequence
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HPO ID+ categorical
Bottom-up propagation

Binary classifier
Negative examples = annotations 

complement

Ensemble model
• Random forest
• Gradient boosted machine
• Generalized linear model

Evaluation
5-fold CV protein centric

Dataset size
Phenotypic abnormality: ~25M ex
Mode of Inheritance: ~28K ex
Clinical modifier: 70K ex
Aging/Mortality: 1.4K ex



Performances of GraPPI model

Method max F Precision Recall

M1 0.74 0.68 0.81

M2 0.69 0.59 0.82

MuFEnsHPO 0.75 0.69 0.82

Mode of Inheritance (v2014)

Phenotypic abnormality (v2014)

Method max F Precision Recall

M1 0.42 0.35 0.56

M2 0.44 0.38 0.51

MuFEnsHPO 0.37 0.34 0.40

Clinical modifier (v2014) 

Method max F Precision Recall

M1 0.39 0.31 0.52

M2 0.48 0.38 0.66

MuFEnsHPO 0.52 0.48 0.56

Aging/Mortality (v2018)

Method max F Precision Recall

MuFEnsHPO 0.61 0.57 0.62



Evaluation of predictions on HPO updated release

Dataset Term-protein pairs Terms Proteins

Train HPO jan-2014 6,841,110 2,445 2,797

Test apr-2016 1,484,115 2,445 608

Data sets

Performance

Method max F Precision Recall
Training 

time

M1 0.3635 0.3040 0.4519 18 hours

M2 0.3826 0.3512 0.4202 3 hours

MuFEnsHPO 0.3775 0.3484 0.4119 21 min

M2 + MuFEnsHPO 0.3946 0.3530 0.4474

Notaro et al. Prediction of Human Phenotype 

Ontology terms by means of hierarchical ensemble 

methods. BMC Bioinformatics (2017) 18:449 

- all annotations -



SUMMARY



Summary

Sequence is universal and reliable protein representation, suitable for 
automatic predictions

Protein-protein interaction (PPI) prediction
… Improved performance with amino acid physico-chemical characteristics
…… with protein profile data
……… with graph features 

Multi feature ensemble of different ML algorithms significantly improved 
the PPI predictive performances

Human Phenotype Ontology (HPO) prediction models based on sequence, 
Graph metrics and PPI data have satisfactory predictive performance

All MuFEns methods are time efficient

IDPs, are currently largely missing from HPO, but since they are involved in 
many disease, they will be in the future more present and curated in HPO 



www.vinca.rs/180
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APPENDIX



Intrinsically disordered proteins (IDPs) 

• The lack of a fixed tertiary structure

• ~33% IDPs biologically functional in 
Eukaryota

• Biased amino acid composition and low 
sequence complexity
• low proportions of bulky hydrophobic 

amino acids
• high proportions of charged and 

hydrophilic amino acids
• Functionally important: involved in the 

regulation of key biological processes via 
binding to significantly augmented protein 
partners. 



Protein Structures Database

wwPDB – worldwide Protein Data Bank               https://www.wwpdb.org

• The single repository of information about the 3D structures of proteins, 
nucleic acids, and complex assemblies

• Established in 1971 in Uptown, New York, US

148,626 structures

Statistics for PDB structures that are 
deposited and processed by year
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HPO prediction
Class-specific approach



HPO prediction for Intrinsically Disorder Proteins

IDPs representation – PAACDC features

PAAC is using five disorder characteristic propensity scales:
• TOP-IDP scale (ranks residues by the their propensity to endorse order or disorder)
• B-values (flexibility parameters for each residue surrounded by two inflexible neighbours)
• FoldUnfold scale (capacity of amino acid residues to form a sufficient number of contacts in a 

globular state)
• DisProt scale (statistical difference in the residue compositions of ordered proteins and IDPs)
• Net charge scale

Protein 

sequence

Dipepdide

Composition (DC) 400 dimensional 

feature vector

70 dimensional 

feature vectorPseudo amino acid 

composition (PAAC)

470 dimensional 

feature vectorConcatenation

PAACDC encoding



Performance of annotation predictions on IDPs

PHENOstruct with PAACDC features

Performance of PAACDC  model

Method max F Precision Recall

M1 0.7682 0.6939 0.8605

M1+ PAACDC 0.7750 0.7648 0.7852

Mode of Inheritance 

Clinical modifier Method max F Precision Recall

M1 0.4776 0.3429 0.7866

M1+ PAACDC 0.5220 0.4503 0.6208

Method max F Precision Recall

M1 0.7682 0.6939 0.8605

PAACDC 0.7122 0.6370 0.8075

Method max F Precision Recall

M1 0.4776 0.3429 0.7866

PAACDC 0.5729 0.6750 0.4975

Mode of Inheritance 

Clinical modifier 


