

Laboratory for Bioinformatics and Computational Chemistry Institute of Nuclear Sciences VINCA

Prediction of protein functions and protein-protein interactions using machine learning

Laboratory for Bioinformatics and Computational Chemistry Institute of Nuclear Sciences VINCA

Prediction of protein functions and protein-protein interactions using machine learning

PANGEA supercontinent

Laboratory for Bioinformatics and Computational Chemistry **Institute of Nuclear Sciences VINCA**

ZAN

Home

Research

Tools and Data

ISTREE

H5N1

H1N1

AQVN/EIIP Calculator

TRI tool

EPIMUTNC

IDPpi_tool

Publications

People

Contact

News

- · JAN 2019 **Bioinformatics training:** Analysis of genomic data with Galaxy platform
- **NOV 2018** Raiko's invited talk at the Hbioinfo2018
- OCT 2018 Branka at the GREEKC meeting in EMBL-EBI **SEP 2018**
- Milica Aleksić defended her graduation thesis
- **SEP 2018 Milan in Estonia**

Computational Biology and Bioinformatics, being an interface between modern biology and informatics encompass discovery, development and implementation of computational algorithms and software tools with aim to increase understanding of the biological processes. In the pharmaceutical sector, these disciplines are used to reduce the time and costs of drug discovery process and to identify drug targets.

We, at Laboratory for Bioinformatics and Computational Chemistry, Institute of Nuclear Sciences VINCA, discover and implement algorithms to improve the understanding of biological systems. We often apply our methods and other techniques to specific biological systems usually through collaboration with experimentalists.

Prediction of protein functions and interactions using machine learning algorithms

Outline

- **What are proteins?**
	- Structure, function, sequence and interactions
- **Protein-protein interaction prediction problem**
	- Important and challenging?
	- PPI algorithm evaluation
	- Our proteome-wide approach
	- Our class-specific approaches (IDPs, TRFs)

• **Protein function prediction problem**

- Ontological annotation of proteins
- Gene ontologies and CAFA challenge
- Our proteome-wide HPO prediction

What are Proteins?

Protein Sequence

Sequence = String

• 20 amino acids; 20 symbols {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V, W,Y}

MATAERRALGIGFQWLSLATLVLICAGQGGRREDGGPACYGGFDLY FILDKSGSVLHHWNEIYYFVEQLAHKFISPQLRMSFIVFSTRGTTL MKLTEDREQIRQGLEELQKVLPGGDTYMHEGFERASEQIYYENRQG YRTASVIIALTDGELHEDLFFYSEREANRSRDLGAIVYCVGVKDFN ETQLARIADSKDHVFPVNDGFQALQGIIHSILKKSCIEILAAEPST ICAGESFQVVVRGNGFRHARNVDRVLCSFKINDSVTLNEKPFSVED TYLLCPAPILKEVGMKAALQVSMNDGLSFISSSVIITTTHCSDGSI LAIALLILFLLLALALLWWFWPLCCTVIIKEVPPPPAE

Molecular Interactions

Protein protein interaction (PPI) network = Graph

- Node = Protein
- Link = Bind or carry out same function

HIPPIE - Human Integrated Protein-Protein Interaction rEference

IntAct - database system and analysis tools for molecular interactions

Protein Protein Interaction (PPI) prediction problem

Importance of PPI prediction

Proteins perform their functions by interacting with other proteins

Studies:

- *In silico* in computer chips
- *2. In vitro* (in glass) in cells, controlled env.
- 3. *In vivo* in living organisms
- Wet lab experiments:
- Costly and labor-intensive
- Biases and limited coverage
- Limitations of equipment resolution
- Incomplete findings

Computer Aided Drug Discovery

>650,000 estimated Human PPIs ~340,000 human PPIs in HIPPIE DB

21,946 protein-coding human genes **240,802,485** possible human protein pairs

- Complex data: PPI, co-expression, co-occurrence, GOs, Literature, Disease variants, etc.
- Heterogeneous
- Incomplete

Methods based on domain knowledge => challenge

Sequence representation is universal and proteome wide available

Evaluation of PPI prediction algorithm

Benchmark sets *Human_Park* [Park and Marcotte, 2012]

- <40% sequence similarity
- \cdot 40 human train sets \sim 28,000 pairs
- 40 C1 test sets ~ **3,000** pairs
- 40 C2 test sets ~ **2,000** pairs
- 40 C3 test sets ~ **2,000** pairs
- Negative protein pairs were randomly sampled
- Balanced sets

Symmetric prediction $p(AB) = p(BA)$ A,B proteins

Evaluation

- C1 test
- C2 test
- C3 test

Human PPI prediction Proteome-wide approach

PPI modeling

PPI modeling process

Coding of proteins into feature vectors

Coding of PPs into feature vectors

 $(A,B)\in Ts$ $(B, A) \in Ts$

PCAACC Protein Encoding

Based on

- protein sequences
- amino acid physicochemical properties

Defining 2 new amino acid (AA) features

Principal component analysis (PCA) of the all 531 features from AAIndex database

Extract first two components as a new AA features

Calculating PCAACC feature vector for the protein pair

For each protein from interaction pair

Transform sequence into 2-dim vector using new AA features

Generate 40-dim vectors using **autocrosscorrelation** function with a lag=10:

$$
ACC_{j,k,l} = \frac{1}{L-l} \sum_{i=1}^{L-\text{lg}} z_{j,i} z_{k,i+l} \quad j,k = 1..2, l = 1..10
$$

Calculate 20-dim amino acid composition (AAC) vector and combine it with ACF vector:

$$
AAC_i = \frac{n_i}{L}, i = 1..20
$$

Concatenate both vectors to obtain final **120-dim** feature vector

PSSMC Protein Encoding

Position specific scoring matrix (PSSM)

- representation of evolutionary profiles using multiple sequence alignments of protein families
- determines the frequency of substitution of each amino acid at specific position in protein family - composition

MSVNISTAGSFTES > MSVNISTAGS^{AADS}

PSSM features

$$
PSSM^{AAC}{}_{i} = \frac{n_i^{k}}{N^*M}, i = 1..20^k, k = 1..3
$$

 $\frac{k}{n}$ is number of occurrences of i-th amino acid K-tuple in N x M dimensional PSSM matrix $n_{\scriptscriptstyle i}$

GraphM Protein Encoding

Calculating GraphM protein features

Training set of interactions

Construct undirected graph from positive interactions

Calculate graph metrics for each vertex/protein

> **Generating GraphM feature vector for protein pair (C1 class)**

20-dim feature vector

Graph metrics used to encode the proteins

- Components • Constraint
- Coreness
- Count_triangles
- Degree
- **Eccentricity**
- Ego
- Eigen centrality
	- Knn
	- Local scan
	- Max cardinality
	- Page_rank
	- Strength

40-dim feature vector

- Alpha centrality
- Authority score
- Betweenness
- Centrality score
- Closeness
- Cluster fast greedy
- Cluster walktrap

GraphM Protein Encoding

PPI graph measures/metrics are used to encode the proteins

- •**Authorityscore** Kleinberg's authority centrality scores
- •**Betweenness** Vertex betweenness centrality
- •**Centrclo** Centrality score
- •**Closeness** Closeness centrality of vertices
- •**Clusterfastgreedy** Community structure via greedy optimization of modularity
-
-
- **Coreness** K-core decomposition of graphs
-
-
-
-
-
-

•**Clusterwalktrap** Community structure via short random walks •**Constraint** Burt's constraint

-
- •**Degree Degree distribution of the vertices**
- **Eccentricity** Eccentricity of the vertices in a graph
- **Knn** Average nearest neighbor degree
- **Localscan** Local scan statistics
- •**Maxcardinality** Maximum cardinality search
- •**Pagerank** The Page Rank algorithm

Variable Importances

Machine Learning

- Backward distributed feature selection driven by genetic algorithm
- Hyper parameter optimization by random/grid search
- Model selection

Algorithm

MuFEnsPPI final model = Ensemble of N<16 models (Multi-Feature Ensemble PPI model)

Comparison to other methods

Six state-of-the-art methods based on sequence and evolutionary profiles for PPI prediction:

- M1 [Martin et al., 2005]
- M2 [Guo et al., 2008]
- M3 [Pitre et al., 2008]
- M4 [Shen et al., 2007]
- M5 [Park & Markotte, 2012]
- M6 [Hamp & Rost, 2015]

Performance statistics on 40 YEAST C1 class and 40 HUMAN C1, C2, C3 classes test benchmark *Human_Park* sets; AUC - Area under the receiver operating characteristic curve

Human_MuFEns Learning Set

Human PPIs set *Human_MuFEns:* 196,000 PPIs; 11045 Proteins

- Exclusion of >40% similar sequences and low-trust
- Negative protein pairs were randomly sampled
- Balanced sets
- 10 random splits to Train sets and C1/C2/C3 with ratio 10:1

Increase of numbers of proteins and PPIs from *Human_Park* to *Human_MuFEns* set Increase of *MuFEnsPPI* model prediction performances (AUC) on new PPI test sets

Human_MuFEns Model

Prediction performances of *MuFEnsPPI* model on new PPI datasets

Feature groups importances for each class

Computing times for feature calculation and ML training Intel(R) Xeon(R) CPU E3-1230 @ 3.40GHz. 8 CPUs. 64GB RAM

HP-GAS Model

HP-GAS Model

GA-STACK ensembling algorithm based on Genetic Algorithm

- Set of base classifiers: random hyper-parameter combinations for every ML algorithm
- The fitness function of GA is AUC on the test set using training by the GLM supervised meta-learning algorithm which uses the predictions from models represented in individual as the features
- Crossover and mutation are bitwise operations on the 'presence' of the models in the individual

Performances of HP-GAS in leave-one step-out experiments

- Automatic feature generation and selection
- Feature group separation
- Meta-learner GA-STACK

Performances of HP-GAS on Human_MuFEns data sets

Sumonja N, Gemovic B, Veljkovic N, Perovic V. Automated feature engineering improves prediction of protein–protein interactions. Amino Acids. 2019; doi:10.1007/s00726-019-02756-9. (IF=2.5)

HP-GAS - https://www.vin.bg.ac.rs/180/tools/HP-GAS.php

Laboratory for Bioinformatics and Computational Chemistry

HP-GAS: prediction of Human Protein protein interactions based on automatic feature engineering and Genetic Algorithm driven Stacking method

HP-GAS is a software for prediction of human protein protein interactions based on graph, evolutionary and sequence features, engineering which utilizes genetic algorithm (GA) and automatic correlation based selection. HP-GAS uses the ensemble of mod learning (ML) algorithms as a method for PPI prediction, where automatic ensembling of ML algorithms was driven by supervize correlation filtering.

HP-GAS software was written in JAVA language and is available as standalone application, which can be executed on any opera Virtual Machine. Minimum system requirements for HP-GAS are: RAM 1 GB; Disk space 1 GB.

The HP-GAS_Sequences.zip file contains 15,650 human sequences, with UniProt identifiers and entrynames in FASTA format, fo be calculated.

- **Standalone software** tool for human PPI prediction
- Based on the HP-GAS model
- Implemented in **JAVA** language

· Windo

- Human_MuFEns set was used as the training set
- Input: protein pairs given with the UniProt identifiers or entry names
- Output: **probabilities** as the predicting values of interactions
- Time efficient tool! Prediction time for a set of **1.000.000** protein pairs is \sim **10 min**

If using HP-GAS, please cite:

Sumonja N, Gemovic B, Veljkovic N, Perovic V. (2019) Automated feature engineering improves prediction of protein-protein interactions. Amino Acids. DOI:10.1007/s00726-019-02756-9.

Sumonja N, Gemovic B, Veljkovic N, Perovic V. Automated feature engineering improves prediction of protein–protein interactions. Amino Acids. 2019; doi:10.1007/s00726-019-02756-9. (IF=2.5)

Human PPI prediction Class-speciffic approach

Human Intrinsically Disordered Protein Interactions prediction

IDPpi_tool - Human Intrinsically Disordered Protein Interactions

Intrinsically Disordered Proteins

- The lack of a fixed tertiary structure
- ~33% IDPs biologically functional in Eukaryota
- Biased amino acid composition and low sequence complexity
	- low proportions of bulky hydrophobic amino acids
	- high proportions of charged and hydrophilic amino acids
- Functionally important: involved in the regulation of key biological processes via binding to significantly augmented protein partners.

DisProt 7.0 (2018): database of manually curated intrinsically disordered regions:

- 803 IDP proteins
- 2167 regions
- 245 human IDPs

Piovesan et al., Nucleic Acids Res, 2017

Density curves for the interactions in the HIPPIE database

Perovic et al , Sci Rep. 2018

IDPpi_tool - Human Intrinsically Disordered Protein Interactions

PPIs

Train (**disorder** x order_1), $\mathsf{order}_1{\in}\mathsf{O}_1$ Test (disorder x order₂), order₂ \in O₂ $O_1 \cap O_2 = \varnothing$

Process of building data sets: train and class C2 test

Perovic et al , Sci Rep. 2018

Pseudo amino acid composition - PseAAC

Protein: $\text{[R}_{1}\text{R}_{2}\text{R}_{3}... \text{R}_{\text{L}}] \rightarrow \text{PseAAC vector: } (\text{p}_{1,}\text{p}_{2},...,\text{p}_{20},\text{p}_{20+1},...,\text{p}_{20+\lambda})$

 $\mathsf{f}_1, ... \mathsf{f}_{20}$ – amino acid frequencies τ₁,... τ_λ - correlation coefficients λ <L

$$
\tau_k = \frac{1}{L-k} \sum_{i=1}^{L-k} J_{i,i+k}, \ (k < L)
$$

$$
{J}_{i,i+k}=\!\frac{1}{4}\sum_{q=1}^{n}\!\!\left[\! {{\phi}_{\!q}}({R}_{\!i+k})\!-\!{{\phi}_{\!q}}({R}_{\!i})\right]\!^{2}
$$

 $\mathsf{\varphi}_{1}$, ..., $\mathsf{\varphi}_{\text{n}}$ - amino acid physico-chemical properties

$$
p_u = \begin{cases} \frac{f_u}{\sum_{i=1}^{20} f_i + w \sum_{i=1}^{A} \tau_i}, & (1 \le u \le 20) \\ \frac{w \tau_{u-20}}{\sum_{i=1}^{20} f_i + w \sum_{i=1}^{A} \tau_i}, & (20+1 \le u \le 20+A) \\ \frac{1}{2} \sum_{i=1}^{20} f_i + w \sum_{i=1}^{A} \tau_i \end{cases}
$$
\n(a) $\frac{y_{12} - y_{23} - y_{34} - y_{45} - y_{56} - y_{67}}{R_1 - R_2 - R_3 - R_4 - R_5 - R_6 - R_7}$

 (c) $J_{1,4}$ $J_{2,5}$ $J_{3,6}$ $J_{4,7}$

Chou K.C.(2001). Prediction of protein cellular attributes using pseudo-amino-acid-composition. PROTEINS: Structure, Function, and Genetics 43, 246255.

IDPs representation – PAACDC features

PAAC is using five disorder characteristic propensity scales:

- TOP-IDP scale (ranks residues by the their propensity to endorse order or disorder)
- B-values (flexibility parameters for each residue surrounded by two inflexible neighbours)
- FoldUnfold scale (capacity of amino acid residues to form a sufficient number of contacts in a globular state)
- DisProt scale (statistical difference in the residue compositions of ordered proteins and IDPs)
- Net charge scale

Comparison of the prediction performances between our proposed method, IDPI and other state-of-the-art sequence based methods

Perovic et al., Sci Rep, 2018

IDPpi_tool performances

Evaluation using a negative subsets randomly chosen from the negative set, where N is the size of the positive set

Comparison of predictive performances through (a) ROC curves and (b) precision/recall plots, across 5 IDP C2 test sets using corresponding 5 IDPs and 5 general human PPI train sets.

IDPpi_tool – new interactor identification

Example: Interactome map of Brain acid-soluble protein-1 (BASP1)

- Transcriptional cofactor
- Intrinsically disordered structure
- Silenced in several tumor types

Predicted interaction between BASP1 and progesterone receptor, PRGR: In vivo binding confirmation

Perovic V, Sumonja N, Marsh L, Radovanovic S, Vukicevic M, Roberts S, Veljkovic N. IDPpi: Protein-Protein Interaction Analyses of Human Intrinsically Disordered Proteins. Scientific Reports. 2018; doi: 10.1038/s41598-018-28815-x. (IF=4.5)

IDPpi_tool **- http://www.vin.bg.ac.rs/180/tools/dispred.php**

(a) (b)

Center for Multidisciplinary Research **Center for Multidiscip Institute of Nuclear Sciences VINCA Institute of Nuclear 9 IDPpi_tool Tool Info** Help **About Us** Tool **Info** Help **About Us Human Intrinsically Disordered Protein Interactions Intrinsically Disordered Protein Interactions** Predict your interactions **Result Summary** ID1 $ID2$ **Predicted interaction Probability** Sequences (max 100) to pair disorder protein with Search Show all BASP1 HUMAN HDAC1 HUMAN YES 0.5424 >HDAC1_HUMAN BASP1_HUMAN ACTB_HUMAN **YES** 0.5276 MAQTQGTRRKVCYYYDGDVGNYYYGQGHPMKPHRIRMTHNLLLNYGLYRKMEIYRPHKAN Choose disorder protein AEEMTKYHSDDYIKFLRSIRPDNMSEYSKQMQRFNVGEDCPVFDGLFEFCQLSTGGSVAS BASP1_HUMAN CASP3_HUMAN **YES** 0.5214 AKT2 HUMAN RAC-beta serine/threonine-protein kinase AVKLNKQQTDIAVNWAGGLHHAKKSEASGFCYVNDIVLAILELLKYHQRVLYIDIDIHHG ANDR_HUMAN Androgen receptor DGVEEAFYTTDRVMTVSFHKYGEYFPGTGDLRDIGAGKGKYYAVNYPLRDGIDDESYEAI BASP1_HUMAN NPM_HUMAN **YES** 0.5148 ANFB_HUMAN Natriuretic peptides B FKPVMSKVMEMFQPSAVVLQCGSDSLSGDRLGCFNLTIKGHAKCVEFVKSFNLPMLMLGG ANF HUMAN Natriuretic peptides A GGYTIRNVARCWTYETAVALDTEIPNELPYNDYFEYFGPDFKLHISPSNMTNQNTNEYLE BASP1_HUMAN | PRGR_HUMAN **YES** 0.5098 APC_HUMAN Adenomatous polyposis coli protein KIKORLFENLRMLPHAPGVOMOAIPEDAIPEESGDEDEDOPDKRISICSSDKRIACEEEF APEX1_HUMAN DNA-(apurinic or apyrimidinic site) lyase BASP1_HUMAN PHB_HUMAN **YES** 0.5063 SDSEEEGEGGRKNSSNFKKAKRVKTEDEKEKDPEEKKEVTEEEKTKEEKPEAKGVKEEVK ARP8_HUMAN Actin-related protein 8 **LA** BASP1 HUMAN SMCA4 HUMAN **YES** 0.5010 ATP7A_HUMAN Copper-transporting ATPase 1 >ACTB HUMAN ATX3 HUMAN Ataxin-3 BASP1_HUMAN ESR1_HUMAN MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQS **YES** 0.5008 AXINI HUMAN Axin-1 KRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMT B2CL1 HUMAN Bcl-2-like protein 1 BASP1_HUMAN GELS_HUMAN **NO** 0.4902 QIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDL BASP1 HUMAN Brain acid soluble protein 1 AGROLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSY BASP1_HUMAN FLI1_HUMAN **NO** 0.4866 UniProt nextprot_{NX} P80723 ELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLS GGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQ BASP1_HUMAN NEUM HUMAN **NO** 0.4653 EVDESGPSIVHRKCF >BASP1 HUMAN BASP1 HUMAN WT1 HUMAN **NO** 0.4517 MGGKLSKKKKGYNVNDEKAKEKDKKAEGAATEEEGTPKESEPQAAAEPAEAKEGKEKPDQ >CASP3_HUMAN DAEGKAEEKEGEKDAAAAKEEAPKAEPEKTEGAAEAKAEPPKAPEQEQAAPGPAAGGEAP MENTENSVDSKSIKNLEPKIIHGSESMDSGISLDNSYKMDYPEMGLCIIINNKNFHKSTG KAAEAAAAPAESAAPAAGEEPSKEEGEPKKTEAPAAPAAQETKSDGAPASDSKPGSSEAA MTSRSGTDVDAANLRETFRNLKYEVRNKNDLTREEIVELMRDVSKEDHSKRSSFVCVLLS PSSKETPAATEAPSSTPKAOGPAASAEEPKPVEAPAANSDOTVTVKE HGEEGIIFGTNGPVDLKKITNFFRGDRCRSLTGKPKLFIIOACRGTELDCGIETDSGVDD Make another prediction DMACHKIPVEADFLYAYSTAPGYYSWRNSKDGSWFIQSLCAMLKQYADKLEFMHILTRVN RKVATEFESFSFDATFHAKKQIPCIVSMLTKELYFYH >NPM HUMAN MEDSMOMOMSPLRPQNYLFGCELKADKDYHFKVDNDENEHQLSLRTVSLGAGAKDELHIV EAEAMNYEGSPIKVTLATLKMSVQPTVSLGGFEITPPVVLRLKCGSGPVHISGQHLVAVE EDAESEDEEEEDVKLLSISGKRSAPGGGSKVPOKKVKLAADEDDDDDDEEDDDEDDDDDD FDDEEAEEKAPVKKSIRDTPAKNAQKSNQNGKDSKPSSTPRSKGQESFKKQEKTPKTPKG PSSVEDIKAKMQASIEKGGSLPKVEAKFINYVKNCFRMTDQEAIQDLWQWRKSL >PHB_HUMAN Time efficient tool! Sequences must be in FASTA format Sort result by p1 predicted values Prediction time for Send 100 protein pairs is less than a second

IDPpi tool Web Interface (a) Front page of *IDPpi* tool web application where users can input the protein sequences in a FASTA format and to choose either automatic combination in pairs or to add protein pairs of interest to the input information. (b) *IDPpi_tool* results page.

Prediction of Transcriptional Regulation Interactions

TRI_tool **Prediction of Transcriptional Regulation Interactions**

Transcriptional regulation (TR) is a complex process which controls the cellular gene expression and among the key processes in all serious human diseases, including cancer.

It is important to identify pharmacologically relevant PPIs.

Datasets and models

1515 proteins involved in human transcriptional regulation (UniProt) **12244** mutual interactions (HIPPIE - Human Integrated Protein-Protein Interaction rEference)

Performances in prediction efficiency

Comparison between TRI_tool and two state-of-the-art sequencebased methods:

M1 (Guo et al., 2008)

M2 (Pitre et al., 2008)

Perovic et al., Bioinformatics, 2017

TRI_tool **– web service Prediction of Transcriptional Regulation Interactions**

http://www.vin.bg.ac.rs/180/tools/tfpred.php

Effective in dealing with **large number of sequences** and outperforms some of the mostly used sequence-based methods in terms of computational efficacy and prediction potential.

- 100 interactions in less then a second!

TRI_tool **predicted WT1-CDK9 interaction**

Identification of a new interacting partner for Wilm's tumor protein (**WT1**): Anti-cancer target cyclin-dependent kinase (**CDK9**)

Perovic V, Sumonja N, Gemovic B, Toska E, Roberts SG, Veljkovic N. TRI_tool: a web-tool for prediction of protein-protein interactions in human transcriptional regulation. Bioinformatics. 2017; 33(2):289-91. (IF=4.5)

TRI_tool **- http://www.vin.bg.ac.rs/180/tools/tfpred.php**

Center for Multidisciplinary Research Institute of Nuclear Sciences VINCA

Prediction of Transcription Factors Interaction

Result Summary

TRI_tool Web Interface (A) Front page of TRI_tool web application where users can input the protein sequences in a FASTA format and to choose either automatic combination in pairs or to add protein pairs of interest to the input information. (B) TRI tool results page.

Perovic et al., Bioinformatics, 2017

Protein function prediction problem

Ontological annotation of proteins

Protein

Assign/predict subgraph

Multi-label classification problem

Challenges

- Inconsistent experiments in vitro, in vivo
- Biased and incomplete biological data

Why this matters

- Understand molecular mechanisms and cellular processes
- Mutation assessment, drug design…

Direct acyclic graph (DAG) of annotations Example from Molecular Function ontology GO:0003674 IS_A IS A nolecular function GO:0005488 GO:0003824 binding catalytic activity

Gene Ontologies (GO)

Gene Ontology (GO) is a term that describes gene product in three domains (across all spieces):

- **1. Molecular function** molecular activities of gene products
- **2. Cellular component** where gene products are active
- **3. Biological process** pathways and larger processes made up of the activities of multiple gene products.

Vocabulary of GOs is structured in a **graph**

The CAFA Challenge

Critical Assessment of protein Function Annotation algorithms (CAFA) is an experiment designed to provide a large-scale assessment of computational methods dedicated to predicting protein function, using a time challenge.

Jiang Y., Oron T., Clarck W.T. et al. An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 2016;17(1):184. (IF=13.2)

The CAFA Challenge - Prediction model

Algorithm

Davidovic R, Perovic V, Gemovic B and Veljkovic N. (2019) DiNGO: standalone application for Gene Ontology and Human Phenotype Ontology term enrichment analysis. Bioinformatics. In submission. DiNGO software page: https://www.vin.bg.ac.rs/180/tools/DiNGO.php

Big Data in 'Assigning GOs' step

20 species, total ~550K proteins Human organism: 20K proteins \rightarrow 400M pairs: PPI based model \rightarrow (x140) 56B numbers \sim 0.45TB ISM d3 based \rightarrow (x8000) 3.2T numbers \sim 25TB

Zhou N., Jiang Y., Nguyen H., Hamid M. et al. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol. 2019; Accepted. (IF=13.2)

The Human Phenotype Ontology (HPO)

Database of phenotypic abnormalities in human diseases

- Difficult to analyze a patient information by computerized approaches.
- Phenotypic information unstructured clinical notes (traditionally)
- HPO standardizes clinical feature descriptions, in a way that is consistent and computer-readable

HPO Mar-2018

Not many tools for HPO annotation prediction

PHENOstruct – M1

- Based on structured support vector machine (SSVM)
- Features:
	- Network data (PPI, co-expression, cooccurrence, etc.) from BioGRID, STRING and GeneMANIA
	- Gene Ontology (GO)
	- Literature
	- Disease variants (UniProt)

HEMDAG – M2

- Hierarchical top down (HTD) and True path rule (TPR) propagation algorithms
- SVM and RANKS ML methods
- Features:
	- Network data (PPI, co-expression, cooccurrence, etc.) from BioGRID and **STRING**
	- Gene Ontology (GO)
	- OMIM annotations

Kahanda et al., F1000Research, 2015

Notaro et al., BMC Bioinformatics, 2017

HPO prediction Proteome-wide approach

MuFEnsHPO model for HPO prediction

Binary classifier

Negative examples = annotations complement

Ensemble model

- Random forest
- Gradient boosted machine
- Generalized linear model

Evaluation 5-fold CV protein centric

Dataset size

Phenotypic abnormality: ~25M ex Mode of Inheritance: ~28K ex Clinical modifier: 70K ex Aging/Mortality: 1.4K ex

Performances of *GraPPI* model

Mode of Inheritance (v2014)

Clinical modifier (v2014)

Phenotypic abnormality (v2014)

Aging/Mortality (v2018)

Evaluation of predictions on HPO updated release

Data sets

- all annotations -

Notaro et al. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods. BMC Bioinformatics (2017) 18:449

Performance

00111111101 $\begin{bmatrix} \begin{array}{c} \text{CS} \\ \text{O} \end{array} \\ \begin{array}{c} 0.1 \end{array} \end{bmatrix}$ DE LINSS19 **SAMSUNG** О \overline{C}
 \overline{C} $C6$
 $150F$ \sum_{220}^{K1}

 \bullet

SUMMARY

Summary

Sequence is universal and reliable protein representation, suitable for automatic predictions

Protein-protein interaction (PPI) prediction

z. Improved performance with amino acid physico-chemical characteristics

- 7.... with protein profile data
- λ with graph features

Multi feature ensemble of different ML algorithms significantly improved the PPI predictive performances

Human Phenotype Ontology (HPO) prediction models based on sequence, Graph metrics and PPI data have satisfactory predictive performance

All MuFEns methods are **time efficient**

IDPs, are currently largely missing from HPO, but since they are involved in many disease, they will be in the future more present and curated in HPO

www.vinca.rs/180

Laboratory for Bioinformatics and Computational Chemistry **Institute of Nuclear Sciences VINCA**

Tools and Data

- . MethSpec: a simple and efficient tool for evaluation of MSP primer specificity MethSpec is a simple tool that carries out evaluation of MSP primer specificity based on primer pair's sequences and parameters such as: primer concentration, ion concentration and annealing temperature.
- . TRI tool Transcriptional Regulation Interactions Transcriptional Regulation Interactions tool TRI_tool is an open-accessed web service for finding transcriptional regulation interactors.
- . IDPpi tool Human Intrinsically Disordered Protein Interactions IDPpi tool is an open-access web service for finding proteins, interactors of human intrinsically disordered protein.
- HP-GAS Prediction of Human Protein protein interactions based on Genetic Algorithm driven Stacking method HP-GAS is a software for prediction of human protein protein interactions based on graph, evolutionary and sequence features. It uses the ensemble of models generated by machine learning (ML) algorithms, where automatic ensembling of ML algorithms is driven by genetic algorithm.
- . DiNGO: standalone application for Gene Ontology and Human Phenotype Ontology term enrichment analysis DINGO is a standalone application based on open source code from BINGO a Java based tool aimed to determine which Gene Ontology (GO) categories are overrepresented in a set of genes.
- . EpiMut: Alignment-independent tool for functional annotation of amino acid substitutions in epigenetic factors EpiMut is software for functional annotation of AASs in epigenetic factors that is independent from sequence alignments and homology search. It is based on the biochemical and physicochemical characteristics of amino acids and digital signal processing approach in protein sequence analysis.

Home

- Research
- **Tools and Data**
	- **MethSpec**
	- TRI_tool
	- IDPpi_tool
	- **HP-GAS**
	- **DINGO**
	- EpiMut
- **Publications**
- People
- Contact

News

- AUG 2019 Professor Milivoi Dopsai and Dr Edelmiro Moman visited our Lab
- JUL 2019 Tamara at the GCC2019 in Freiburg
- $-$ JUN 2019 Tamara, Branka i Rajko at the Ensembl workshops
- MAY 2019
- **Nevena teaches Genomics** at the Faculty of Biology
- MAY 2019
	- Katarina Teenager of the Year 2019 at the **Innovation Week**

Dr Nevena Veljkovic Group leader nevenav@vinca.rs Curriculum Vitae Nevena @ ResearchGate

Dr Vladimir Perovic Research Associate Bioinformatics, Computer Science vladaper@vinca.rs Curriculum Vitae Vladimir @ ResearchGate Vladimir @ ORCID

Dr Milan Sencanski Senior Research Associate Theoretical & Computational Chemistry sencanski@vinca.rs Milan @ ResearchGate

Dr Jelena Milićević Senior Research Associate Chemistry jdjordjevic@vinca.rs Curriculum Vitae - English Curriculum Vitae - Serbian

Neven Sumonja Research Assistant Molecular Biology nevenusma@gmail.com

Nebojsa Skrbic **IT Support** skrba@vinca.rs

Dr Sanja Glisic Principal Research Fellow Molecular Biology, Bioinformatics sanja@vinca.rs Sanja @ ResearchGate

Dr Branislava Gemovic Research Associate **Molecular & Computational Biology** gemovic@vinca.rs Curriculum Vitae Branislava @ ResearchGate

Dr Radoslav Davidovic Research Associate **Molecular & Computational Biology** radoslav@vinca.rs

Draginja Radosevic Research Trainee Molecular Biology draga@vinca.rs

Tamara Drljača Research Trainee Molecular Biology tamara.drljaca@vinca.rs

Acknowledgements

Institute of Nuclear Sciences Vinča

Nevena Veljkovic Neven Sumonja Branislava Gemovic Radoslav Davidovic Sanja Glisic Veljko Veljkovic

Lindsey Marsh Stefan Roberts

Mladen Nikolic Jovana Kovacevic

 θ 1001010101010101

<i>ovoroidi 1188

0109890101010101010

Intrinsically disordered proteins (IDPs)

- The lack of a fixed tertiary structure
- ~33% IDPs biologically functional in Eukaryota
- Biased amino acid composition and low sequence complexity
	- low proportions of bulky hydrophobic amino acids
	- high proportions of charged and hydrophilic amino acids
- Functionally important: involved in the regulation of key biological processes via binding to significantly augmented protein partners.

Protein Structures Database

wwPDB – worldwide Protein Data Bank *https://www.wwpdb.org*

- The single repository of information about the 3D structures of proteins, nucleic acids, and complex assemblies
- Established in 1971 in Uptown, New York, US

148,626 structures

Statistics for PDB structures that are deposited and processed by year

HPO prediction Class-specific approach

HPO prediction for Intrinsically Disorder Proteins

PAAC is using five disorder characteristic propensity scales:

- TOP-IDP scale (ranks residues by the their propensity to endorse order or disorder)
- B-values (flexibility parameters for each residue surrounded by two inflexible neighbours)
- FoldUnfold scale (capacity of amino acid residues to form a sufficient number of contacts in a globular state)
- DisProt scale (statistical difference in the residue compositions of ordered proteins and IDPs)
- Net charge scale

Performance of annotation predictions on IDPs

PHENOstruct with PAACDC features

Performance of PAACDC model

