Structural SVM and Applications in Bioinformatics

Jovana Kovačević

University of Belgrade, Faculty of Mathematics Machine Learning and Applications Group

November 2017

(MatF)

MLA@MaTF

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Structure

Structural classification

- Support vector machine (SVM)
- Structural support vector machine (SSVM)

Protein function prediction problem

- Protein function representation
- Structural classification problem

Implementation

- Parameter adjusting
- Loss function
- Optimization algorithm

Performance

Structure

Structural classification

- Support vector machine (SVM)
- Structural support vector machine (SSVM)

Protein function prediction problem

- Protein function representation
- Structural classification problem

3 Implementation

- Parameter adjusting
- Loss function
- Optimization algorithm

Performance

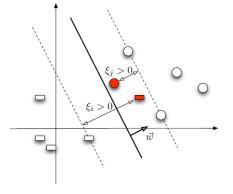
Support vector machine (SVM)

- Output: $y \in \{-1, 1\}$
- Discriminant function: $f(\mathbf{x}) = \langle \mathbf{x}, \mathbf{w} \rangle + b$
- Inference problem:
 y = sgn(f(x))
- Learning problem: minimize

$$\frac{||\boldsymbol{w}||^2}{2} + C\sum_{i=1}^n \xi_i$$

such that $y_i \cdot f(\mathbf{x}_i) \ge 1 - \xi_i$, $\xi_i \ge 0$ for each training example (\mathbf{x}_i, y_i)

Maximize margin while minimizing training error,

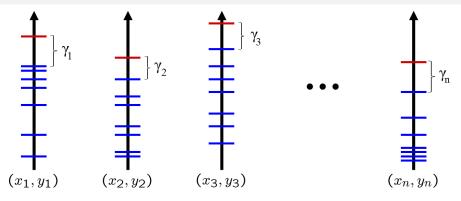


Structural support vector machine (SSVM)

- Output: y is a structured object, eg. array, graph, tree, ...
 Set Y of all outputs can be huge or even infinite
- Joint representation: $\Psi: \boldsymbol{X} \times \boldsymbol{Y} \to \mathbb{R}^n$
- Score function: $F_{m{w}}(m{x},m{y})=\langle\Psi(m{x},m{y}),m{w}
 angle$
- Inference problem: $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y} \in \mathbf{Y}} F_{\mathbf{w}}(\mathbf{x}^*, \mathbf{y})$
- Loss function: $\Delta(\mathbf{y}, \hat{\mathbf{y}})$ (eg. Hamming distance, Jaccard distance, ...)
- Margin:

$$\gamma_i = F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y}_i) - \max_{\boldsymbol{y} \in \boldsymbol{Y} \setminus \boldsymbol{y}_i} \{F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y})\}$$

Margin



$$\gamma_i = F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y}_i) - \max_{\boldsymbol{y} \in \boldsymbol{Y} \setminus \boldsymbol{y}_i} \{F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y})\}$$

• hard formulation: $\gamma_i \geq 1$

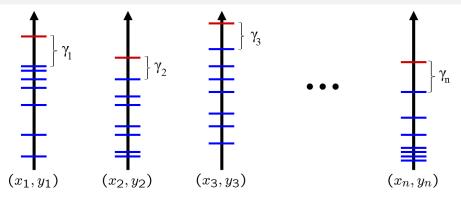
(MatF)

November 2017 6 / 20

3

SSVM

Margin



$$\gamma_i = F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y}_i) - \max_{\boldsymbol{y} \in \boldsymbol{Y} \setminus \boldsymbol{y}_i} \{F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y})\}$$

- hard formulation: $\gamma_i \geq 1$
- soft formulation: $\gamma_i \ge 1 \xi_i$

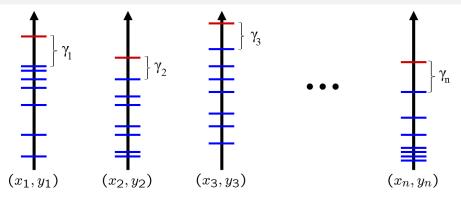
(MatF)

November 2017 6 / 20

э

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Margin



$$\gamma_i = F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y}_i) - \max_{\boldsymbol{y} \in \boldsymbol{Y} \setminus \boldsymbol{y}_i} \{F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y})\}$$

- hard formulation: $\gamma_i \geq 1$
- soft formulation: $\gamma_i \ge 1 \xi_i$
- margin rescaling formulation: $\gamma_i \ge \Delta(\mathbf{y}_i, \mathbf{y}_{wrong}) \xi_i$

$$\forall i: F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y}_i) - \max_{\boldsymbol{y} \in \boldsymbol{Y} \setminus \boldsymbol{y}_i} \{F_{\boldsymbol{w}}(\boldsymbol{x}_i, \boldsymbol{y})\} \geq \Delta(\boldsymbol{y}_i, \boldsymbol{y}_{\boldsymbol{w}rong}) - \xi_i$$

(MatF)

November 2017 7 / 20

2

<ロト <問ト < 目ト < 目ト

$$\forall i: F_{w}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \max_{\mathbf{y} \in \mathbf{Y} \setminus \mathbf{y}_{i}} \{F_{w}(\mathbf{x}_{i}, \mathbf{y})\} \geq \Delta(\mathbf{y}_{i}, \mathbf{y}_{wrong}) - \xi_{i}$$

Cancel maximum function:

$$\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \geq \Delta(y_i, y) - \xi_i$$

э

A D N A B N A B N A B N

• For all training examples (x_i, y_i)

$$\forall i: F_{w}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \max_{\mathbf{y} \in \mathbf{Y} \setminus \mathbf{y}_{i}} \{F_{w}(\mathbf{x}_{i}, \mathbf{y})\} \geq \Delta(\mathbf{y}_{i}, \mathbf{y}_{wrong}) - \xi_{i}$$

Cancel maximum function:

$$\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \geq \Delta(y_i, y) - \xi_i$$

э

< □ > < 同 > < 回 > < 回 > < 回 >

- For all training examples (x_i, y_i)
- $\bullet \ \ldots$ and for any possible wrong output ${\boldsymbol{y}}$

$$\forall i: F_{w}(x_{i}, y_{i}) - \max_{y \in Y \setminus y_{i}} \{F_{w}(x_{i}, y)\} \geq \Delta(y_{i}, y_{wrong}) - \xi_{i}$$

Cancel maximum function:

$$\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \ge \Delta(y_i, y) - \xi_i$$

< □ > < □ > < □ > < □ >

- For all training examples (x_i, y_i)
- ... and for any possible wrong output y
- ... have the score for the correct output

$$\forall i: F_{w}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \max_{\mathbf{y} \in Y \setminus \mathbf{y}_{i}} \{F_{w}(\mathbf{x}_{i}, \mathbf{y})\} \geq \Delta(\mathbf{y}_{i}, \mathbf{y}_{wrong}) - \xi_{i}$$

$$\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \ge \Delta(y_i, y) - \xi_i$$

- For all training examples (x_i, y_i)
- ... and for any possible wrong output y
- ... have the score for the correct output
- ... greater than the score for the incorrect output

$$\forall i: F_{w}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \max_{\mathbf{y} \in Y \setminus y_{i}} \{F_{w}(\mathbf{x}_{i}, \mathbf{y})\} \geq \Delta(\mathbf{y}_{i}, \mathbf{y}_{wrong}) - \xi_{i}$$

$$\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \ge \Delta(y_i, y) - \xi_i$$

- For all training examples (x_i, y_i)
- ... and for any possible wrong output y
- ... have the score for the correct output
- ... greater than the score for the incorrect output
- ... by at least the loss between the correct and incorrect output

$$\forall i: F_{w}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \max_{\mathbf{y} \in Y \setminus \mathbf{y}_{i}} \{F_{w}(\mathbf{x}_{i}, \mathbf{y})\} \geq \Delta(\mathbf{y}_{i}, \mathbf{y}_{wrong}) - \xi_{i}$$

$$\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \ge \Delta(y_i, y) - \xi_i$$

- For all training examples (x_i, y_i)
- \bullet ... and for any possible wrong output ${\boldsymbol{y}}$
- ... have the score for the correct output
- ... greater than the score for the incorrect output
- ... by at least the loss between the correct and incorrect output
- ... eventually subtracted by slack variable

$$\forall i: F_{w}(\mathbf{x}_{i}, \mathbf{y}_{i}) - \max_{\mathbf{y} \in Y \setminus \mathbf{y}_{i}} \{F_{w}(\mathbf{x}_{i}, \mathbf{y})\} \geq \Delta(\mathbf{y}_{i}, \mathbf{y}_{wrong}) - \xi_{i}$$

$$\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \geq \Delta(y_i, y) - \xi_i$$

Quadratic program formulation

$$\min_{\boldsymbol{w},\xi} \frac{||\boldsymbol{w}||^2}{2} + \frac{C}{n} \sum_{i=1}^n \xi_i$$

s.t.
$$\forall i : \xi_i \geq 0$$

 $\forall i, \forall y \in Y : F_w(x_i, y_i) - F_w(x_i, y) \geq \Delta(y_i, y) - \xi_i$

(MatF)

æ

イロト イヨト イヨト イヨト

Quadratic program formulation

$$\min_{\boldsymbol{w},\xi} \frac{||\boldsymbol{w}||^2}{2} + \frac{C}{n} \sum_{i=1}^n \xi_i$$

s.t.
$$\forall i : \xi_i \geq 0$$

 $\forall i, \forall y \in \mathbf{Y} : F_w(\mathbf{x}_i, \mathbf{y}_i) - F_w(\mathbf{x}_i, \mathbf{y}) \geq \Delta(\mathbf{y}_i, \mathbf{y}) - \xi_i$

• possibly very large number of constraints, even infinite

(MatF)

• • • • • • • • • • • • •

Quadratic program formulation

$$\min_{\boldsymbol{w},\boldsymbol{\xi}}\frac{||\boldsymbol{w}||^2}{2}+\frac{C}{n}\sum_{i=1}^n\xi_i$$

s.t.
$$\forall i : \xi_i \ge 0$$

 $\forall i, \forall y \in \mathbf{Y} : F_w(\mathbf{x}_i, \mathbf{y}_i) - F_w(\mathbf{x}_i, \mathbf{y}) \ge \Delta(\mathbf{y}_i, \mathbf{y}) - \xi_i$

- possibly very large number of constraints, even infinite
- SVMstruct¹ framework (using cutting plane method for optimization)

¹T. Joachims et al., Machine Learning 2009

Structure

Structural classification

- Support vector machine (SVM)
- Structural support vector machine (SSVM)

Protein function prediction problem

- Protein function representation
- Structural classification problem

3 Implementation

- Parameter adjusting
- Loss function
- Optimization algorithm

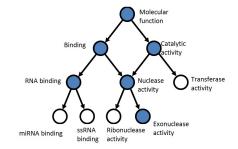
Performance

Why is it important?

- Knowing protein function informs us on its role in the organism
- Functional mutations may be the cause of different human diseases
- Growing number of newly discovered proteins
- Slow and expensive experimental methods vs. fast and cheaper computational methods

Protein function representation

- GO project
- Three different ontologies:
 - molecular function
 - biological processes
 - cellular component
- Each node describes more specific function than its ancestors.
- Consistency requirement.



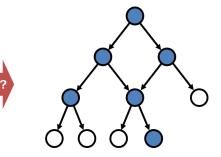
< 3 >

< A >

Structural classification problem

>sp|P04637|P53 HUMAN

MEEGSOPSVEPPI-GQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDTE QWFTEDFGPDEAPRMPEAAPEVAPAPAAPATPAPAPAPAPSWPLSSVPSQKT YQGSYGRFLGFLHSGTAKSVTCTYSPALNKHFCQLAKTCFVQLWVDSTPPF GTRVFAMAIYKQSQHMTEVVRCPHHERCSDSDGLAPPQHLIRVEGULRVE YLDDNNFFRHSVVVPYEPPEVGSDCTTIHVNYCMSSCMGGMNRFLILTI TLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGSTKR ALPINTSSSPQFKKKFLDGEYTTLQIRGREFEMFRELNBALELKDAQAGK EPCGSRANSSHLKSKKQGTSRHKKLMFKFEQPSD



3

Structure

Structural classification

- Support vector machine (SVM)
- Structural support vector machine (SSVM)

Protein function prediction problem

- Protein function representation
- Structural classification problem
- 3 Implementation
 - Parameter adjusting
 - Loss function
 - Optimization algorithm

Performance

 input vector x - primary sequence information coded as histogram of tetragrams

4 2 5 4 2 5

- input vector x primary sequence information coded as histogram of tetragrams
- output vector y 0-1 vector, each element corresponds to one node in the GO ontology

- input vector x primary sequence information coded as histogram of tetragrams
- output vector y 0-1 vector, each element corresponds to one node in the GO ontology
- joint representation of input and output vector $\Psi({m x},{m y})={m x}\otimes{m y}$

- input vector x primary sequence information coded as histogram of tetragrams
- output vector y 0-1 vector, each element corresponds to one node in the GO ontology
- joint representation of input and output vector $\Psi({m x},{m y})={m x}\otimes{m y}$
- loss function $\Delta(\mathbf{y}, \mathbf{y'})$: Jaccard's distance, $1 F_1$, semantic distance²

²Clark and Radivojac, Bioinformatics 2013

- input vector x primary sequence information coded as histogram of tetragrams
- output vector y 0-1 vector, each element corresponds to one node in the GO ontology
- joint representation of input and output vector $\Psi({m x},{m y})={m x}\otimes{m y}$
- loss function $\Delta(\mathbf{y}, \mathbf{y'})$: Jaccard's distance, $1 F_1$, semantic distance²
- solution for inference and augmented inference problem: proposed algorithm for solving the following optimization problems that appear in the training and testing phase:

$$\begin{aligned} \operatorname*{argmax}_{\boldsymbol{y'} \in \boldsymbol{Y}}(F(\boldsymbol{x}, \boldsymbol{y'}) + \Delta(\boldsymbol{y}, \boldsymbol{y'})) \\ \operatorname*{argmax}_{\boldsymbol{y'} \in \boldsymbol{Y}}(F(\boldsymbol{x}, \boldsymbol{y'})) \end{aligned}$$

²Clark and Radivojac, Bioinformatics 2013

(MatF)

MLA@MaTF

November 2017 14 / 20

Information content of a graph

• i(T) - information content of graph T

$$i(T) = \log \frac{1}{Pr(T)}$$
$$= \log \frac{1}{\prod_{v \in T} Pr(v | \mathcal{P}(v))}$$
$$= \sum_{v \in T} \log \frac{1}{Pr(v | \mathcal{P}(v))}$$
$$= \sum_{v \in T} ia(v)$$

• ia(v) - information assertion of node v

(MatF)

3

A D N A B N A B N A B N

Semantic distance

- T true DAG
- P predicted DAG
- remaining uncertainty

$$ru(T,P) = \sum_{v \in T \setminus P} ia(v)$$

misinformation

$$mi(T, P) = \sum_{v \in P \setminus T} ia(v)$$

semantic distance

$$s_k(T, P) = (ru(T, P)^k + mi(T, P)^k)^{\frac{1}{k}}$$

normalized semantic distance

normalized_
$$s_k(T, P) = \frac{s_k(T, P)}{\sum_{v \in T \cup P} ia(v)}$$

- 1: **Input**: training instance (x_i, y_i)
- 2: **Output**: y_{best} that maximizes $H(x_i, y)$ over $y \in Y$
- 3: Initialization: $L = \{y_{root}\}, y_{best} = \emptyset, H_{best} = -\infty$
- 4: repeat
- $y_{head} :=$ first element from L 5:
- $Y_{ext} :=$ all extensions of y_{head} by one node 6:
- for each $y_{ext} \in Y_{ext}$ do 7:
- if $i(y_{ext}) \geq imax$ then 8:
- continue 9:
- end if 10:
- insert y_{ext} in sorted linked list L 11:
- if $H(\mathbf{y}_{ext}) > H_{best}$ then 12:
- update **v**_{best}, H_{best} 13:
- end if 14:
- 15: end for
- remove **y**_{head} from L, increment step 16:
- 17: **until** step > smax or L is empty

Structure

Structural classification

- Support vector machine (SVM)
- Structural support vector machine (SSVM)

Protein function prediction problem

- Protein function representation
- Structural classification problem
- 3 Implementation
 - Parameter adjusting
 - Loss function
 - Optimization algorithm

Performance

< 4 ► >

Performance

- comparison to current methods on CAFA (around 130)
- very simple input, basic method setting, promising results

organism	F_1	best F_1	CAFA rang
ARATH	0.69	0.74	4
ECOLI	0.36	0.6	75
HUMAN	0.47	0.62	45
MOUSE	0.54	0.62	16
RAT	0.63	0.78	17

< □ > < □ > < □ > < □ > < □ > < □ >

MLA@MaTF

Thank you for your attention!

æ

・ロト ・回ト ・ヨト ・ヨ