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Learning objective

* Minimizing loss function:
) )
— squared error: _Z (v — (7 x +w,))
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— logistic loss: ~ log(1+ & #Gw)
1 = k

* Useful properties:
— convexity

— differentiability
— smoothness



Regularization
mbgn L(w) + Q(w)

* Fighting ill-posed problems:
— non-unique solutions
— non-smoothness

* “Penalty”, Lagrangian dual

* In learning:
— Fighting sample variance / overfitting
=> limiting capacity of the model



Null Regularization

 Modified objective:
min L(w) + A||w||
w

* “Resistance’” for parameters to take large
values (Shrinking)

— Linear regression
— Logistic regression
* Prior towards the null hypothesis: “no link

between input and output” => statistical
(scientific) caution (unbiased)



Prior Regularization

* Prior for parameter values:

min L(w) + A||lw — w?|
w

* Prior belief:
— previous regression parameters!
— prior assumptions
* Penalty for breaking our prior (Bayesian,
Scientific)
— Data vs Knowledge



Multi-task problem

Single Task Learning

Global model - ﬁ -

Local model

Local model + null- = Q

regularization
Best regularization? s | e | (J
— more data! Multi-Task Learning
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Learning Methods

transfer learning

multi-task learning

multi-label learning
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Transfer Learning

Define source & target domains

Learn on the source domain

Generalize on the target domain

Multi-task Learning

Model the task relatedness

Learn all tasks simultaneously

Tasks may have different data/features

Multi-label Learning

Model the label relatedness

Learn all labels simultaneously

Labels share the same data/features

Multi-class Learning

Learn the classes independently

All classes are exclusive

Zhou,Chen,Ye (2012)



MULTI-TASK MODELS



How Tasks Are Related

Methods
* Mean-regularized MTL
* Joint feature learning

* Trace-Norm regularized
% MTL

- * Alternating structural
Asli“Ta%ﬂgg}e related Optlmlzatlon (ASO)
 Shared Parameter
Gaussian Process

Zhou,Chen,Ye (2012)



How Tasks Are Related

Methods

e Clustered MTL
* Tree MTL

* Network MTL

Assumption:
Tasks have tree structur
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Notation

Task m

Dimension d
A

Task m Task m

Learning ) >

Feature Matrices X; Target Vectors Y, Model Matrix W

Sample n,
Sample n,

p uoisuawig

Sample n,
Sample n,

e We focus on linear models: Y; = X; X W;
X; € RW*4y, € RW*L W = [W,, W, ..., W,,,]

Zhou,Chen,Ye (2012)



Mean-Regularized Multi-Task Learning

Evgeniou & Pontil, 2004 KDD
e Assumption: task parameter vectors of all tasks are
close to each other.
— Advantage: simple, intuitive, easy to implement
— Disadvantage: may not hold in real applications.

Regularization
penalizes the deviation of each task
from the mean
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Multi-Task Learning with High Dimensional Data

e |n practical applications, we may deal with high
dimensional data.
— Gene expression data, biomedical image data

e Curse of Dimensionality

e Dealing with high dimensional data in multi-task
learning
— Embedded feature selection: Ll/Lq - Group Lasso

— Low-rank subspace learning: low-rank assumption — ASO,
Trace-norm regularization

Zhou,Chen,Ye (2012)



Multi-Task Learning with Joint Feature Learning

Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

* Using group sparsity: 1 /¢ ,-norm regularization )

e When g>1 we have group sparsity. IWllyq = zuwlnq
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Joint Feature Selection in Disease

Progression

The progression of disease is assumed to involve the same
set of features at different time points [Zhou et.al. KDD 11].

Feature Space: d
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Trace-Norm Regularized MTL

o Capture Task Relatedness via a Shared Low-Rank Structure

task 1 |::> |:> trained |:> [ g6nera|ization]
data model
task 2 training |::> E> trained |:> [ generalization]
data model
[ ]
[ ]
[ ]

task n training |:> |:|'> trained |:> [ L ]
eneralization
data . model &

[ A shared low-rank structure ]

Zhou,Chen,Ye (2012)



Task 1

Task 2

Task 3

Low-Rank Structure for MTL

training data

weight vector  target
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Low-Rank Structure for MTL

Jiet. al. 2009 ICML

e Rank minimization formulation

— mmi/n Loss(W) + A X Rank(IW/)

— Rank minimization is NP-Hard for general loss functions

e Convex relaxation: trace norm minimization
— mwirn Loss(W) + A X ||W]|,  IWIl. : sum of singular values of W

— The trace norm is theoretically shown to be a good
approximation for rank function (Fazel et al., 2001).

Zhou,Chen,Ye (2012)



N-MSE

0.7
1

Low-Rank Structure for MTL

o Evaluation on the School datal:

Predict exam scores for 15362 students from 139 schools

Describe each student by 27 attributes

Compare Ridge Regression, Lasso, and Trace Norm (for inducing a low-rank structure)

L L 3 13 L

L

—%— Lasso

—&— Ridge Regression

—=— Trace Norm

Index of Training Ratio

Performance measure:

mean squared error

N-MSE = -
variance (target)

The Low-Rank Structure
(induced via Trace Norm)
leads to the smallest N-MSE.

Zhou,Chen,Ye (2012)



Clustered Multi-Task Learning

e Use regularization to capture clustered structures.
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Clustered Models
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Clustered Multi-Task Learning

e (Capture structures by minimizing sum-

. m tasks
of-square error (SSE) in K-means p A \
clustering:
k | N N
min lwy — w|°
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F task number m < cluster number k

F : m Xk orthogonal cluster indicator matrix
F;; =1/ /njifi € I; and 0 otherwise

Zhou,Chen,Ye (2012)



Multi-Task Learning with Tree Structures
e Tree-Guided Group Lasso (Kim and Xing 2010 ICML)

Structure

min Loss(f) + ﬂz Z Wv||ﬁév||2

j VeV

B1 B2 Bs
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V4
CGM:{BII BZ}D

Input Features

G.s={PBs}

Output (Tasks)

Zhou,Chen,Ye (2012)



Multi-Task Learning with Graph Structures

e A simple way to encode graph structure is to
penalize the difference of two tasks that have an
edge between them

e Given a set of edges E, we thus penalize:
E|

Z ‘ Wegi1y = Weyz
i=1

e The graph regularization term can also be
represented in the form of Laplacian term

2

= [IWR"|I§ R € RIF>m
2

IWRT||Z2 = tr((WRT)TWRT) = tr(WRTRWT) = tr(WLWT)

Zhou,Chen,Ye (2012)



Yuan et. al. 2012 Neurolmage
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MULTI TASK LEARNING VIA STRUCTUR AL REGULARIZATION
JIAYU ZHOU, JIANHUI CHEN, JIEPING YE

e A multi-task learning package
e Encode task relationship via structural regularization
e www.public.asu.edu/~jye02/Software/MALSAR/

Zhou,Chen,Ye (2012)



MTL Algorithms in MALSAR 1.0

Mean-Regularized Multi-Task Learning

MTL with Embedded Feature Selection

— Joint Feature Learning
— Dirty Multi-Task Learning
— Robust Multi-Task Feature Learning

MTL with Low-Rank Subspace Learning
— Trace Norm Regularized Learning
— Alternating Structure Optimization

— Incoherent Sparse and Low Rank Learning
— Robust Low-Rank Multi-Task Learning

Clustered Multi-Task Learning
Graph Regularized Multi-Task Learning

Zhou,Chen,Ye (2012)



Other Multi-task

* NN hidden layers

* Gaussian processes shared kernel
parameters



Q&A

Thank youl!



