

MACHINE LEARNING AND APPLICATIONS GROUP

Regularization for Multi-task learning

Miloš Jovanović

some slides taken from: Zhou,Chen,Ye (2012) Multi-Task Learning: Theory, Algorithms, and Applications 12th SIAM SDM, 2012

Learning objective

Minimizing loss function:

- squared error:
$$\frac{1}{n}\sum_{i=1}^{n}(y_i - (w^Tx_i + w_0))^2$$

- logistic loss:
$$\frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i(w^T G_i + w_0)})$$

- Useful properties:
 - convexity
 - differentiability
 - smoothness

Regularization

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) + \Omega(\mathbf{w})$$

- Fighting ill-posed problems:
 - non-unique solutions
 - non-smoothness
- "Penalty", Lagrangian dual
- In learning:
 - Fighting sample variance / overfitting
 - => limiting capacity of the model

Null Regularization

Modified objective:

$$\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) + \lambda ||\mathbf{w}||$$

- "Resistance" for parameters to take large values (Shrinking)
 - Linear regression
 - Logistic regression
- Prior towards the null hypothesis: "no link between input and output" => statistical (scientific) caution (unbiased)

Prior Regularization

Prior for parameter values:

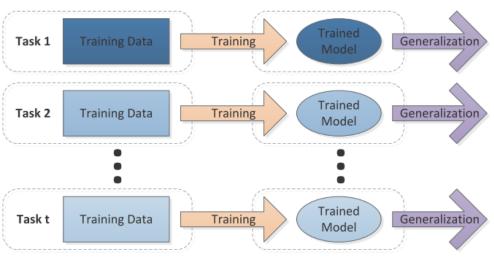
$$\min_{w} \mathcal{L}(w) + \lambda \|w - w^0\|$$

- Prior belief:
 - previous regression parameters!
 - prior assumptions
- Penalty for breaking our prior (Bayesian, Scientific)
 - Data vs Knowledge

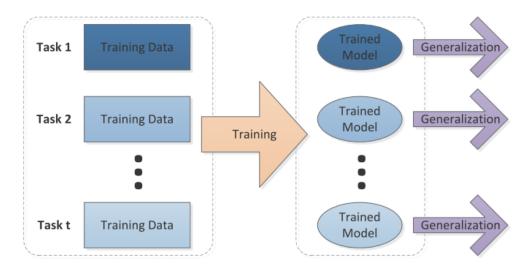
Multi-task problem

- Global model
- Local model
- Local model + nullregularization
- Best regularization?
 - more data!
- Regularization for sharing data
 - penalty for being different

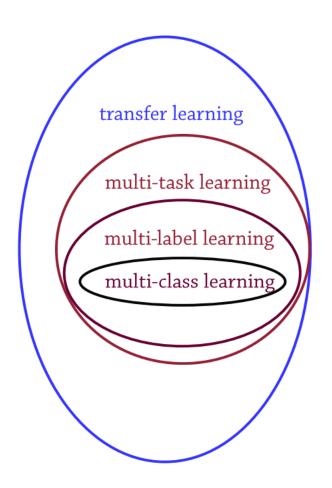
Single Task Learning



Multi-Task Learning



Learning Methods



Transfer Learning

- Define source & target domains
- Learn on the source domain
- Generalize on the target domain

Multi-task Learning

- Model the task relatedness
- Learn all tasks simultaneously
- Tasks may have different data/features

Multi-label Learning

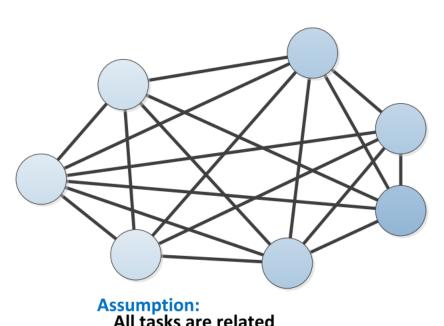
- Model the label relatedness
- Learn all labels simultaneously
- Labels share the same data/features

Multi-class Learning

- Learn the classes independently
- All classes are exclusive

MULTI-TASK MODELS

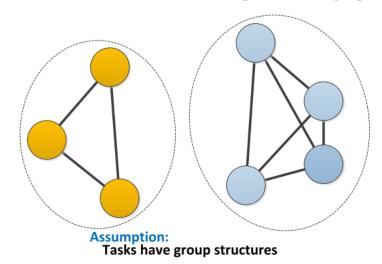
How Tasks Are Related



Methods

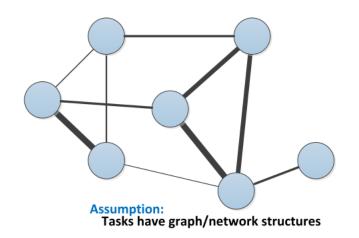
- Mean-regularized MTL
- Joint feature learning
- Trace-Norm regularized
 MTL
- Alternating structural optimization (ASO)
- Shared Parameter
 Gaussian Process

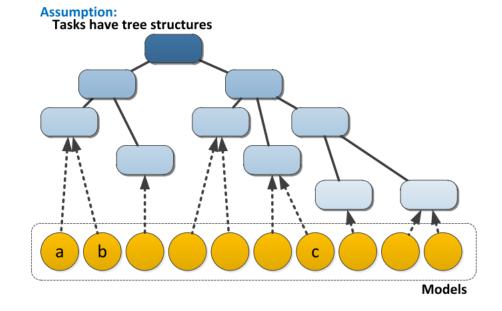
How Tasks Are Related



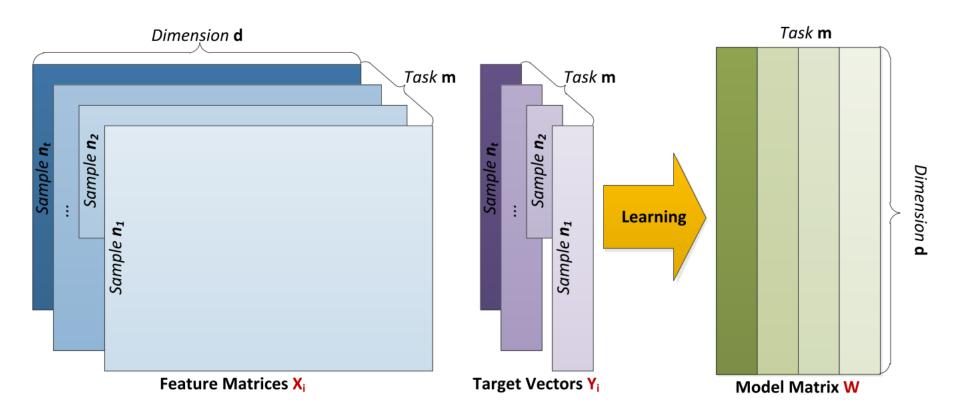
Methods

- Clustered MTL
- Tree MTL
- Network MTL





Notation



• We focus on linear models: $Y_i = X_i \times W_i$ $X_i \in \mathbb{R}^{n_i \times d}, Y_i \in \mathbb{R}^{n_i \times 1}, W = [W_1, W_2, ..., W_m]$

Mean-Regularized Multi-Task Learning

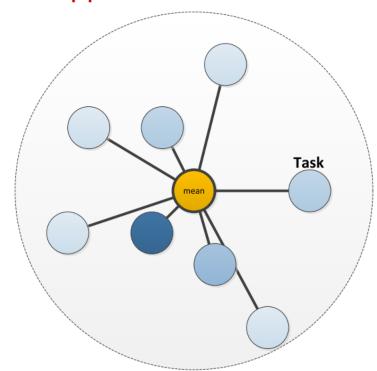
Evgeniou & Pontil, 2004 KDD

- Assumption: task parameter vectors of all tasks are close to each other.
 - Advantage: simple, intuitive, easy to implement
 - Disadvantage: may not hold in real applications.

Regularization

penalizes the deviation of each task from the mean

$$\min_{W} \frac{1}{2} \|XW - Y\|_{F}^{2} + \lambda \sum_{i=1}^{m} \left\| W_{i} - \frac{1}{m} \sum_{s=1}^{m} W_{s} \right\|_{2}^{2}$$



Multi-Task Learning with High Dimensional Data

- In practical applications, we may deal with high dimensional data.
 - Gene expression data, biomedical image data
- Curse of Dimensionality
- Dealing with high dimensional data in multi-task learning
 - Embedded feature selection: L₁/L_q Group Lasso
 - Low-rank subspace learning: low-rank assumption ASO,
 Trace-norm regularization

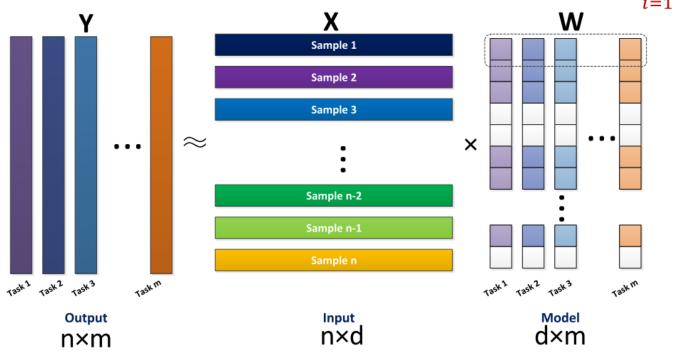
Multi-Task Learning with Joint Feature Learning

Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

• Using group sparsity: ℓ_1/ℓ_q -norm regularization

When q>1 we have group sparsity.

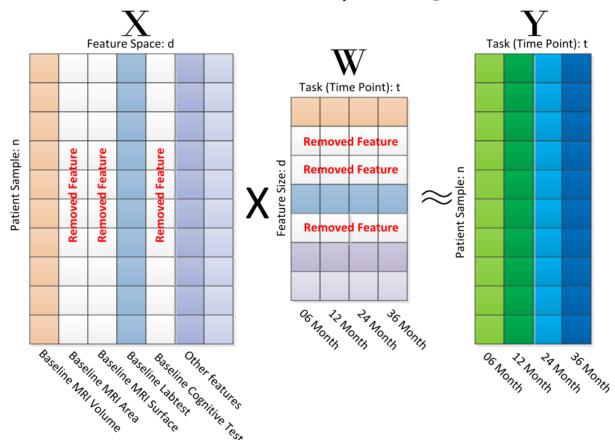
$$||W||_{1,q} = \sum_{i=1}^{n} ||\mathbf{w}_i||_q$$



$$\min_{W} \frac{1}{2} \|XW - Y\|_{F}^{2} + \lambda \|W\|_{1,q}$$

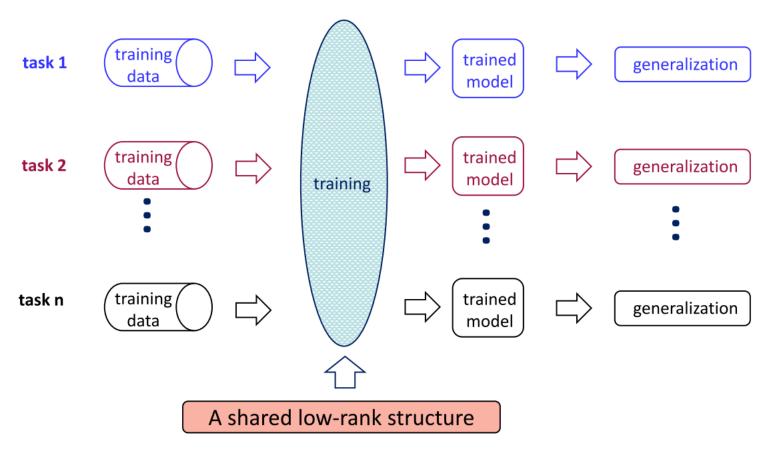
Joint Feature Selection in Disease Progression

 The progression of disease is assumed to involve the same set of features at different time points [Zhou et.al. KDD 11].

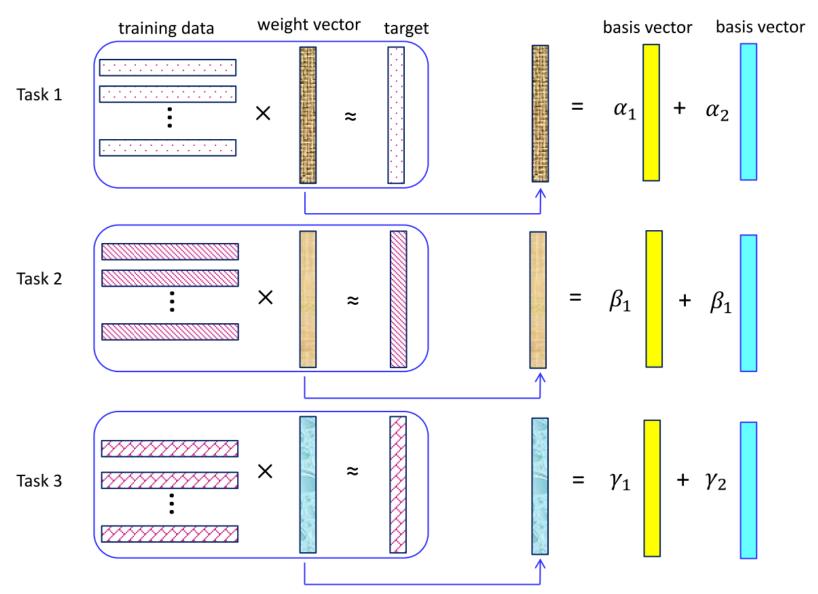


Trace-Norm Regularized MTL

Capture Task Relatedness via a Shared Low-Rank Structure



Low-Rank Structure for MTL



Low-Rank Structure for MTL

Ji et. al. 2009 ICML

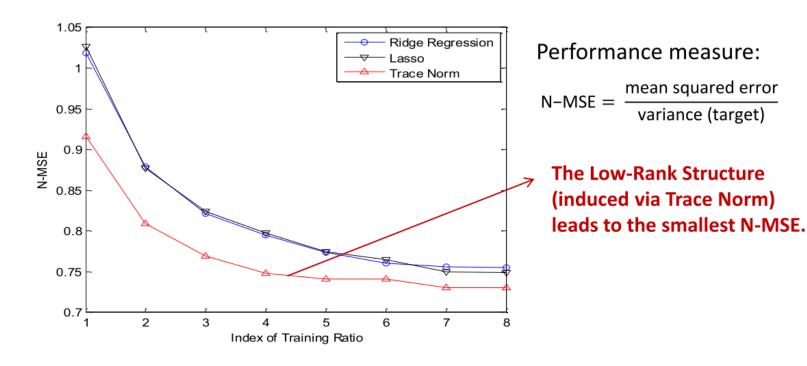
- Rank minimization formulation
 - $\min_{W} \text{Loss}(W) + \lambda \times \text{Rank}(W)$
 - Rank minimization is NP-Hard for general loss functions

- Convex relaxation: trace norm minimization
 - $-\min_{W} \text{Loss}(W) + \lambda \times ||W||_{*} \quad ||W||_{*} : \text{sum of singular values of W}$
 - The trace norm is theoretically shown to be a good approximation for rank function (Fazel et al., 2001).

Low-Rank Structure for MTL

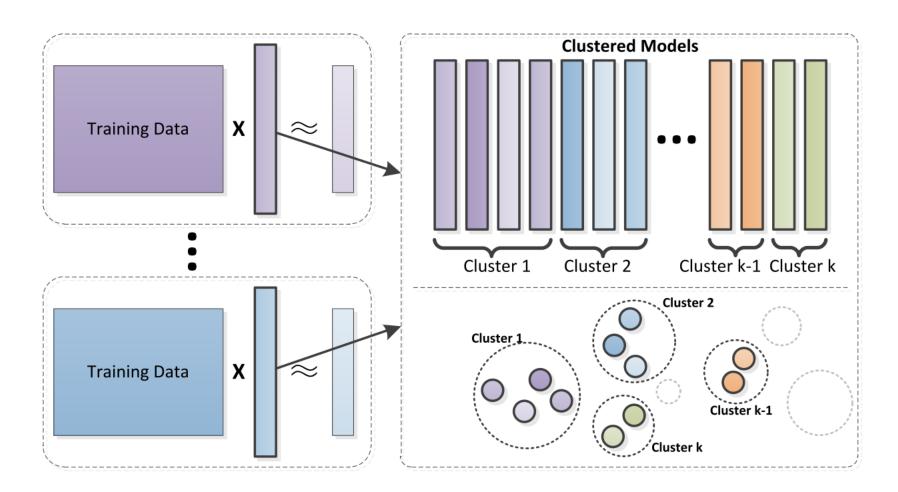
Evaluation on the School data¹:

- Predict exam scores for 15362 students from 139 schools
- Describe each student by 27 attributes
- Compare Ridge Regression, Lasso, and Trace Norm (for inducing a low-rank structure)



Clustered Multi-Task Learning

• Use regularization to capture clustered structures.



Clustered Multi-Task Learning

 Capture structures by minimizing sumof-square error (SSE) in K-means clustering:

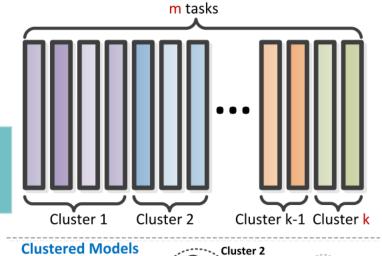
$$\min_{I} \sum_{j=1}^{k} \sum_{v \in I_{j}} \left\| w_{v} - \overline{w}_{j} \right\|_{2}^{2}$$

$$I_{j} \text{ index set of } j^{\text{th}} \text{ cluster}$$

Equivalent

$$\min_{F} \operatorname{tr}(W^{T}W) - \operatorname{tr}(F^{T}W^{T}WF)$$

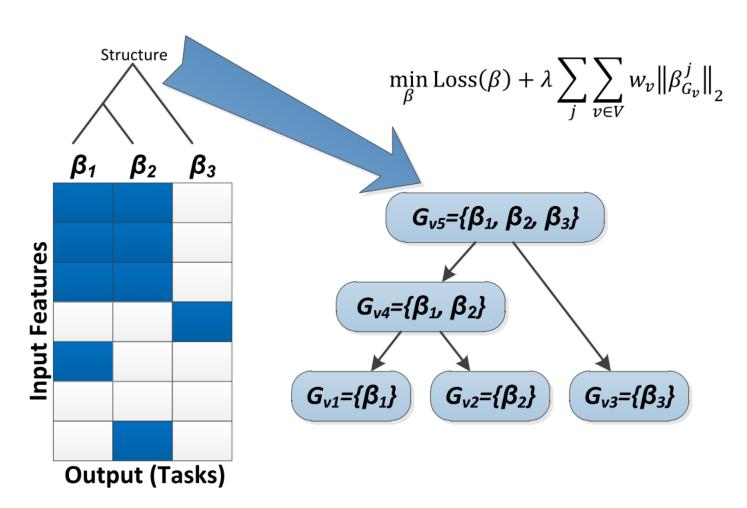
 $F: m \times k$ orthogonal cluster indicator matrix $F_{i,j} = 1/\sqrt{n_j}$ if $i \in I_j$ and 0 otherwise



task number m < cluster number k

Multi-Task Learning with Tree Structures

Tree-Guided Group Lasso (Kim and Xing 2010 ICML)



Multi-Task Learning with Graph Structures

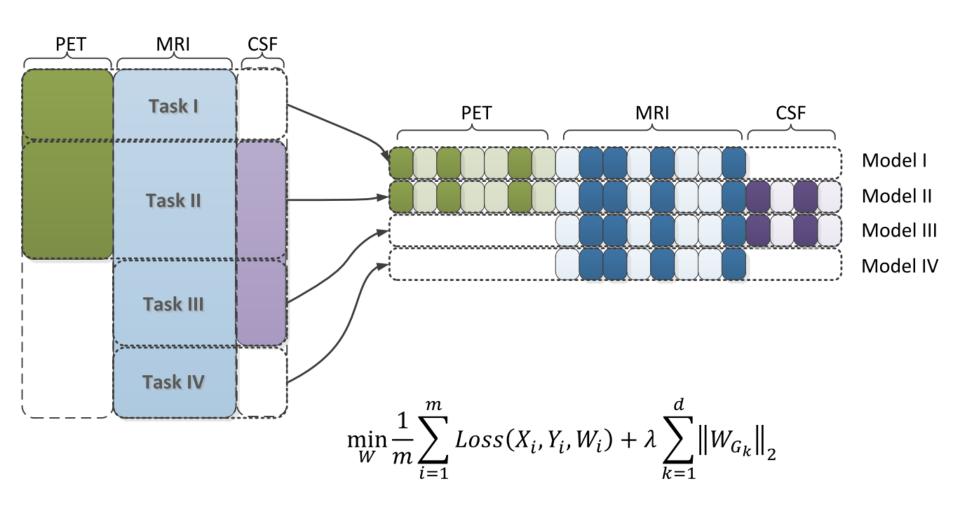
- A simple way to encode graph structure is to penalize the difference of two tasks that have an edge between them
- Given a set of edges E, we thus penalize:

$$\sum_{i=1}^{|E|} \left\| W_{e_{\{i,1\}}} - W_{e_{\{i,2\}}} \right\|_{2}^{2} = \|WR^{T}\|_{F}^{2} \quad R \in \mathbb{R}^{|E| \times m}$$

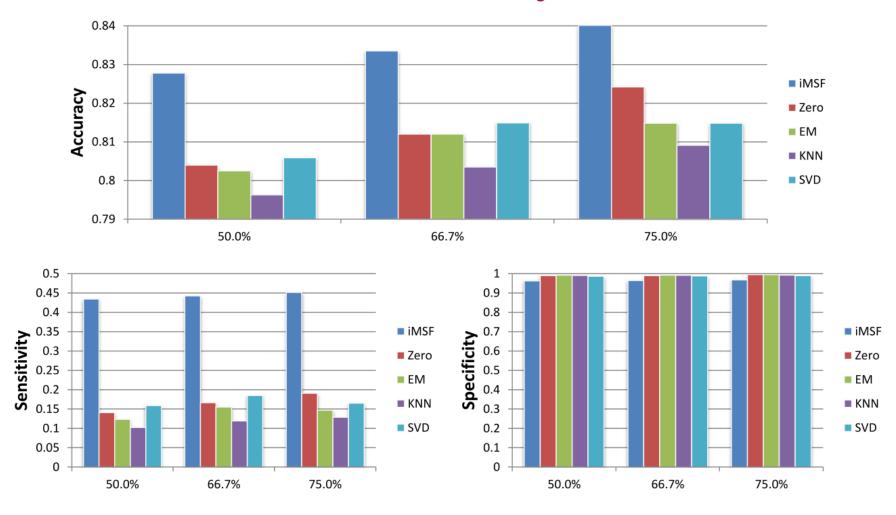
 The graph regularization term can also be represented in the form of Laplacian term

$$||WR^T||_F^2 = tr((WR^T)^T WR^T) = tr(WR^T RW^T) = tr(W\mathcal{L}W^T)$$

Yuan et. al. 2012 Neurolmage



Yuan et. al. 2012 Neurolmage



- A multi-task learning package
- Encode task relationship via structural regularization
- www.public.asu.edu/~jye02/Software/MALSAR/

MTL Algorithms in MALSAR 1.0

- Mean-Regularized Multi-Task Learning
- MTL with Embedded Feature Selection
 - Joint Feature Learning
 - Dirty Multi-Task Learning
 - Robust Multi-Task Feature Learning
- MTL with Low-Rank Subspace Learning
 - Trace Norm Regularized Learning
 - Alternating Structure Optimization
 - Incoherent Sparse and Low Rank Learning
 - Robust Low-Rank Multi-Task Learning
- Clustered Multi-Task Learning
- Graph Regularized Multi-Task Learning

Other Multi-task

- NN hidden layers
- Gaussian processes shared kernel parameters

Q&A

Thank you!