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Dimensionality reduction 

• Unsupervised (?) 

• Why reduce dimensions? 

– Curse of Dimensionality  (who is hurt by CoD?) 

– Regularization 

– Feature Extraction - expressiveness   (linear?) 

– Increse efficiency (memory and speed) 

– Visualizations 

– Noise reduction 

• Reduce so to preserve: 

– variance?   structure?   distances?   neighborhood? 

• Preprocessing step (for prediction, information 
retrieval, vizualisation, ... )   => evaluation! 



Dim. reduction technique 

• PCA 

• SVD 

• Matrix Factorization 

 

• Very powerful! 

– ... and fast! 

is ? 



Manifolds 



Nonlinear PCA 

• PCA, based on covariance (centered X): 

 

 

 

 

• Solve: 



MultiDimensional Scaling (MDS) 

• Usual distance calculation:  

– given points on a map (with coordinates), 

calculate distances 

• MDS: 

– given distances, calculate cords 

– gradient descend, or eigen => dual PCA 



Sammon mapping 

• more importance on small distances 

• non-linear, non-convex 

• circular embeddings with uniform 

density 

 



Isomap 

• Graph-based 

– k-nearest neighbor graph, Euclidean weights  

– pairwise geodesic distances – Dijkstra, Floyd 

• “local MDS without local optima” 

 

 

• eigen:  



Isomap 



Local Linear Embedding (LLE) 

• Preserve 

neighborhood 

structure 

• Assumption: manifold 

locally linear 

– locally linear, globally 

non-linear 

– local mapping efficient 



Local Linear Embedding (LLE) 

• Problem1:  

– For each i learn W independently 

– W quadratic programming – efficient 



Local Linear Embedding (LLE) 

• Problem2: 

– Z a sparse eigenvector problem 

– Solution invariant to global translation, 

rotation and reflection 

– choose bottom K non-zero eigenvectors 

• can be calculated iteratively without full 

matrix diagonalization 

 



Local Linear Embedding (LLE) 



Local Linear Embedding (LLE) 

• Problem: 

– no forcing to separate instances 

– only unit variance constraing 

 



Laplacian Eigenmaps 

• Very similar to LLE: 

– identify the nearest neighbor graph 

– define the edge weigths: 

 

 

 

 

 

– compute the bottom eigenvectors of L 

L – Graph Laplacian    Y – Graph Spectra  



SNE 

• Probabilistic model  (Stochastic 

Neighborhood Embedding) 

 



t-SNE 

• Gaussians at many spatial scales 

– infinite gaussian mixture (same mean) 

  => t-distribution 

• Tricks for optimization: 

– add gaussian noise to y after update 

– annealing and momentum 

– adaptive global step-size 

– dimension decay 



t-SNE 

• Demo!      Toolbox! 

• Hyperparameters really matter 

• Cluster sizes in a t-SNE plot mean nothing 

• Distances between clusters might not mean 

anything 

• Random noise doesn’t always look random 

 

 

 

https://distill.pub/2016/misread-tsne/
http://lvdmaaten.github.io/drtoolbox/


t-SNE on MNIST 



Autoencoders 

• Deep neural networks 



Autoencoders 



Autoencoders 



Autoencoders 

Evaluation! 



Comparisson (1-NN) 

• Artificial datasets: 

 

 

 

 

• Natural datasets 



Sparse Coding 

 



Sparse Coding 

 

 

 

• Alternate optimization over D and α 

• Matching Pursuit, Orthogonal Matching 

Pursuit, ...   

• Dictionary learning 



Color Image Denoising 



Color Image Denoising 



Color Image Denoising 



Stacked Sparse Auto-encoders 

W 

W’ 

Input 

Reconstruction 

Denoising Autoencoder 

W 
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Input 

Reconstruction 

Sparse Denoising 

 Autoencoder 
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Input 

Stacked Sparse  

Denoising Autoencoder 



Adaptive Multi-Column SSDA 

21 columns 



Embedding 

• Structure-preserving mapping 

• Euclidean embedding (Euclidean space) 

– images 

– words 

– graphs 

– bipartite-categories  (co-occurance) 

• Allows to apply computational learning 
on symbols (objects) 

• Even allow arithmetic!? 

• Allow visualization: embedding + t-sne 



Summary 

• Why reduce dimensions? 
– Curse of Dimensionality  (who is hurt by CoD?) 

– Regularization 

– Feature Extraction - expressiveness   (linear?) 

– Increse efficiency (memory and speed) 

– Visualizations 

– Noise reduction 

• Reduce so to preserve: 
– variance?   structure?   distances?   neighborhood? 

• Parametric VS Non-parametric Encoding (new 
instances) 

• With or without Decoding 
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Q&A 

Thank you! 


