

Non-linear Dimensionality Reduction and Embedding

Miloš Jovanović

Dimensionality reduction

- Unsupervised (?)
- Why reduce dimensions?
 - Curse of Dimensionality (who is hurt by CoD?)
 - Regularization
 - Feature Extraction expressiveness (linear?)
 - Increse efficiency (memory and speed)
 - Visualizations
 - Noise reduction
- Reduce so to preserve:
 - variance? structure? distances? neighborhood?
- Preprocessing step (for prediction, information retrieval, vizualisation, ...) => evaluation!

Dim. reduction technique is?

- PCA
- SVD
- near Matrix Factorization

- Z = XU
- $\mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$

 $\mathbf{X} = \mathbf{Z}\mathbf{U}^{\top}$

 Very powerful! - ... and fast!

Manifolds

Nonlinear PCA

• PCA, based on covariance (centered X): $\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^\top \qquad \sum_{n=1}^{N} \mathbf{x}_n = \mathbf{0}$

nonlinear transformation $\phi(\mathbf{x})$

$$\mathsf{C} = rac{1}{N} \sum_{n=1}^{N} \phi(\mathsf{x}_n) \phi(\mathsf{x}_n)^{ op}$$

• Solve: $Su_i = \lambda_i u_i$

 $ilde{\mathsf{K}} = \mathsf{K} - \mathbf{1}_N \mathsf{K} - \mathsf{K} \mathbf{1}_N + \mathbf{1}_N \mathsf{K} \mathbf{1}_N$

MultiDimensional Scaling (MDS)

- Usual distance calculation:
 - given points on a map (with coordinates), calculate distances
- MDS:
 - given distances, calculate cords
 - gradient descend, or eigen => dual PCA

$$\min_{Y} \sum_{i=1}^{t} \sum_{i=1}^{t} (\mathbf{d}_{ij}^{(X)} - \mathbf{d}_{ij}^{(Y)})^2$$

where
$$\mathtt{d}_{ij}^{(X)} = ||x_i - x_j||^2$$
 and $\mathtt{d}_{ij}^{(Y)} = ||y_i - y_j||^2$

Sammon mapping

- more importance on small distances
- non-linear, non-convex
- circular embeddings with uniform density

$$Cost = \sum_{ij} \begin{pmatrix} \|\mathbf{x}_{i} - \mathbf{x}_{j}\| - \|\mathbf{y}_{i} - \mathbf{y}_{j}\| \\ \|\mathbf{x}_{i} - \mathbf{x}_{j}\| - \|\mathbf{y}_{i} - \mathbf{y}_{j}\| \\ \|\mathbf{x}_{i} - \mathbf{x}_{j}\| \end{pmatrix}^{2}$$

Isomap

- Graph-based
 - k-nearest neighbor graph, Euclidean weights **D** pairwise geodesic distances Dijkstra, Floyd
- "local MDS without local optima"

$$\mathbf{G} = -\frac{1}{2}\mathbf{H}\mathbf{D}\mathbf{H} \qquad \mathbf{H} = \mathbf{I} - \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathsf{T}}$$

• eigen: $\{ \mathbf{v}_1, \dots, \mathbf{v}_N \} \\ \{ \lambda_1, \dots, \lambda_N \}$

$$z_{ik} = \sqrt{\lambda_k} v_{ki}$$

- Preserve neighborhood structure
- Assumption: manifold locally linear
 - locally linear, globally non-linear
 - local mapping efficient

• Problem1:

$$\mathbf{x}_i pprox \sum_{j \in \mathcal{N}} W_{ij} \mathbf{x}_j$$

- For each i learn W independently
- W quadratic programming efficient

$$W = rg \min_{W} \sum_{i=1}^{N} ||\mathbf{x}_i - \sum_{j \in \mathcal{N}_i} W_{ij} \mathbf{x}_j||^2$$

$$s.t. orall i \quad \sum_j W_{ij} = 1$$

• Problem2:

$$\mathbf{x}_i pprox \sum_{j \in \mathcal{N}} W_{ij} \mathbf{x}_j$$

- Z a sparse eigenvector problem
- Solution invariant to global translation, rotation and reflection
- choose bottom K non-zero eigenvectors
 - can be calculated iteratively without full matrix diagonalization

$$\mathbf{Z} = \arg\min_{\mathbf{Z}} \sum_{i=1}^{N} ||\mathbf{z}_{i} - \sum_{j \in \mathcal{N}} W_{ij}\mathbf{z}_{j}||^{2} \quad s.t.\forall i \quad \sum_{i=1}^{N} \mathbf{z}_{i} = 0, \quad \frac{1}{N}\mathbf{Z}\mathbf{Z}^{\top} = \mathbf{I}$$

- Problem:
 - no forcing to separate instances
 - only unit variance constraing

Laplacian Eigenmaps

- Very similar to LLE:
 - identify the nearest neighbor graph
 - define the edge weigths: $W_{ij} = e^{-(||\mathbf{x}_i \mathbf{x}_j||)/s}$

$$\min_{Y} \sum_{i=1}^{t} \sum_{j=1}^{t} (\mathbf{y}_i - \mathbf{y}_j)^2 W_{ij}$$
$$\min_{Y} \operatorname{Tr}(YLY^T)$$

$$L = R - W$$
 $R_{ii} = \sum_{j=1}^{t} W_{ij}$ $YRY^T = I$

- compute the bottom eigenvectors of L

L-Graph Laplacian Y-Graph Spectra

SNE

 Probabilistic model (Stochastic Neighborhood Embedding)

t-SNE

Gaussians at many spatial scales

 infinite gaussian mixture (same mean)

=> t-distribution

- Tricks for optimization:
 - add gaussian noise to y after update
 - annealing and momentum
 - adaptive global step-size
 - dimension decay

t-SNE

- <u>Demo</u>! <u>Toolbox</u>!
- Hyperparameters really matter
- Cluster sizes in a t-SNE plot mean nothing
- Distances between clusters might not mean anything
- Random noise doesn't always look random

t-SNE on MNIST

• Deep neural networks

Fig. 2. (A) Top to bottom: Random samples of curves from the test data set; reconstructions produced by the six-dimensional deep autoencoder; reconstructions by "logistic PCA" (8) using six components; reconstructions by logistic PCA and standard PCA using 18 components. The average squared error per image for the last four rows is 1.44, 7.64, 2.45, 5.90. (B) Top to bottom: A random test image from each class; reconstructions by the 30-dimensional autoencoder; reconstructions by 30dimensional logistic PCA and standard PCA. The average squared errors for the last three rows are 3.00, 8.01, and 13.87. (C) Top to bottom: Random samples from the test data set; reconstructions by the 30-

dimensional autoencoder; reconstructions by 30-dimensional PCA. The average squared errors are 126 and 135.

С

Fig. 4. (A) The fraction of A retrieved documents in the same class as the query when a query document from the test set is used to retrieve other test set documents, averaged over all 402,207 possible queries. (B) The codes produced by two-dimensional LSA. (C) The codes produced by a 2000-500-250-125-2 autoencoder.

Comparisson (1-NN)

• Artificial datasets:

Dataset (d)	None	PCA	Isomap	KPCA	MVU	DM	LLE	LEM	HLLE	LTSA	Sammon	Autoenc.	LLC	MC
Swiss roll (2D)	3.68%	29.76%	3.40%	30.24%	4.12%	33.50%	3.74%	22.06%	3.56%	3.90%	22.34%	49.00%	26.72%	22.66%
Helix (1D)	1.24%	35.50%	13.18%	38.04%	7.48%	35.44%	32.32%	15.24%	52.22%	0.92%	52.22%	52.22%	27.44%	25.94%
Twin peaks (2D)	0.40%	0.26%	0.22%	0.12%	0.56%	0.26%	0.94%	0.88%	0.14%	0.18%	0.32%	49.06%	11.04%	0.30%
Broken Swiss (2D)	2.14%	25.96%	14.48%	32.06%	32.06%	58.26%	36.94%	10.66%	6.48%	15.86%	27.40%	87.86%	37.06%	32.24%
HD (5D)	24.19%	22.18%	23.26%	27.46%	25.38%	23.14%	20.74%	24.70%	50.02%	42.62%	20.70%	49.18%	34.14%	21.34%

Natural datasets

(c) Twinpeaks dataset.

(d) Broken Swiss roll dataset.

Dataset (d)	None	PCA	Isomap	KPCA	MVU	DM	LLE	LEM	HLLE	LTSA	Sammon	Autoenc.	LLC	МС
MNIST (20D)	5.11%	6.74%	12.64%	13.86%	13.58%	25.00%	10.02%	11.30%	91.66%	90.32%	6.90%	7.18%	16.12%	14.84%
COIL20 (5D)	0.14%	3.82%	15.69%	7.78%	25.14%	11.18%	22.29%	95.00%	50.35%	4.17%	0.83%	51.11%	4.31%	27.36%
ORL (8D)	2.50%	4.75%	27.50%	6.25%	24.25%	90.00%	11.00%	97.50%	56.00%	12.75%	2.75%	6.25%	11.25%	22.50%
NiSIS (15D)	8.24%	7.95%	13.36%	9.55%	15.67%	48.98%	15.48%	47.59%	48.98%	24.68%	48.98%	9.22%	26.86%	18.91%
HIVA (15D)	4.63%	5.05%	4.92%	5.07%	4.94%	5.46%	4.97%	4.81%	3.51%	3.51%	3.51%	5.12%	3.51%	4.79%

Sparse Coding

Sparse Coding

- Alternate optimization over ${\boldsymbol D}$ and ${\boldsymbol \alpha}$
- Matching Pursuit, Orthogonal Matching Pursuit, ...
- Dictionary learning

Color Image Denoising

Color Image Denoising

Color Image Denoising

Stacked Sparse Auto-encoders

Denoising Autoencoder

Sparse Denoising Autoencoder Stacked Sparse Denoising Autoencoder

Adaptive Multi-Column SSDA

	Denoise	ed Image			S 4.	6	8					
		+			54	16	98					
]	S 1 S 2	S c							
SSDA	SSDA2	SSDAc		Weight Prediction Module								
f ₁	$f_1 - f_2 - \cdots - f_c - \cdots - f_1 f_2 \cdots f_c$ Features											
Method / Noise Type	Clean	Gaussian	S & P	Speckle	Block	Border	Average					
No denoising	1.09%	29.17%	18.63%	8.11%	25.72%	90.05%	28.80%					
Gaussian SSDA	2.13%	1.52%	2.44%	5.10%	20.03%	8.69%	6.65%					
Salt & Pepper SSDA	1.94%	1.71%	2.38%	4.78%	19.71%	2.16%	5.45%					
Speckle SSDA	1.58%	5.86%	6.80%	2.03%	19.95%	7.36%	7.26%					
Block SSDA	1.67%	5.92%	15.29%	7.64%	5.15%	1.81%	6.25%					
Border SSDA	8.42%	19.87%	19.45%	13.89%	51.38%	1.12%	15.69%					
AMC-SSDA	1.50%	1.47%	2.22%	2.09%	5.18%	1.15%	2.21%					
Tang et al. $[26]^*$	1.24%	-	-	-	19.09%	1.29%	-					

Embedding

- Structure-preserving mapping
- Euclidean embedding (Euclidean space)
 - images
 - words
 - graphs
 - bipartite-categories (co-occurance)
- Allows to apply computational learning on symbols (objects)
- Even allow arithmetic!?
- Allow visualization: embedding + t-sne

Summary

- Why reduce dimensions?
 - Curse of Dimensionality (who is hurt by CoD?)
 - Regularization
 - Feature Extraction expressiveness (linear?)
 - Increse efficiency (memory and speed)
 - Visualizations
 - Noise reduction
- Reduce so to preserve:
 - variance? structure? distances? neighborhood?
- Parametric VS Non-parametric Encoding (new instances)
- With or without Decoding

References

- Bengio Y. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning, Vol 2 No 1. 2009.
- Burges CJC. **Dimension Reduction: a guided tour**. Foundations and Trends in Machine Learning, Vol. 2, No. 4, 2009
- Ghodsi A. **Dimensionality Reduction: a short tutorial**. Department of Statistics and Actuarial Science, TR. 2006
- Globerson A et al. Euclidean Embedding of Co-occurence Data. Journal of Machine Learning Research 8. 2007.
- Hinton G. Non-linear dimensionality reduction, Course CSC 2535 materials, 2013
- Hinton GE, Salakhutdinov RR. **Reducing the Dimensionality of Data with Neural Networks**. Science, vol 313. 2006.
- Khoshneshin M, Street WN. Collaborative Filtering via Euclidean Embedding. RecSys 2010, Barcelona, Spain.
- Mairal J, Elad M, Sapiro G. Sparse Representation for Color Image Restoration. IEEE Transactions on Image Processing, vol 17, no 1.2008
- Piyush Rai, Nonlinear Dimensionality Reduction, Course CS5350/6350 materials, 2011
- Saul LK, et al. **Spectral Methods for Dimensionality Reduction**, Chapter in Semi-Supervised Learning by Chapelle O et al. 2006
- Saul LK, Roweis ST. An Introduction to Locally Linear Embedding. 2010.
- van der Maaten L, Postma E, Herik J. **Dimensionality Reduction: a comparative review**. Tilburg centre for Creative Computing, TR 2009-005, 2009.
- Yuhong Guo, Topics In Computer Science: **Data Representation Learning**, Course CIS 5590 materials, 2014

Thank you!