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Agent and Environment

e At each time step t the agent: ’* SN
o Executes action A observation / AL / action
o Receives observation O, o, A\ > F A
o Receives scalar reward R p = e

e At each time step t the environment:
o Receives action A, reward | R,
o Emits observation O,
o  Emits scalar reward R,




Comparison with other ML paradigms

There is no supervisor, only a reward signal
Feedback is delayed, not instantaneous
Sequential data, not independent and identically distributed

Agent’s actions affect the subsequent data it receives



Learning from interaction

e The agent is not told what to
do so it must discover the
best behavior

Y

e The actions that it takes affect
future outcomes

e It hastolearnto map its current
position to actions



Examples of Reinforcement Learning

Fly stunt manoeuvres in a helicopter

Defeat the world champion at Backgammon / Go / Chess
Manage an investment portfolio

Make a humanoid robot walk

Play Atari games better than humans



Rewards

Areward R is a scalar feedback signal

Reward indicates how well the agent is doing

The agent’s goal is to maximize cumulative reward
All goals in RL can be described by maximizing
cumulative reward



Examples of rewards

e Defeat the world champion at Backgammon / Go
o +reward for winning

o -reward for losing

e Manage an investment portfolio

o +reward for each $ in bank

e Make a humanoid robot walk
o +reward for forward motion

o - reward for falling over

e Play Atari games
o +reward for increasing the score

o - reward for decreasing the score



Sequential Decision Making

e (Coal: section sequence of actions to maximize total
cumulative reward

e Reward may be delayed
e Actions may have long term consequences

e It may be better to sacrifice immediate reward to gain more
long-term rewards



Fully Observable Environments

e Agent observes environment state
e Astate S, is Markov if and only if:

P[St+1|St] — P[St—|—1|SlaSZ7”°7St]

e The future is independent of the past given the present
e The state is sufficient statistics of the future



Learning and Planning

® [earning:
o The environment is initially unknown
o The agent interacts with the environment
o The agent improves its policy

e Planning:
o The model of environment is known

o The agent performs computations with its model (reasoning, thought,
search)

o The agent improves its policy



Atari example: Learning

* Rules of the game are unknown

observation { S W’ 3 action

* Learn directly from interaction
ot

with environment
* Pick actions on joystick, see

observations (pixels) and scores




Atari example: Planning

e Rules of the game are known

e |fthe agent takes actions a from state s:
o What would be the next state?
o What would the score be?

e Plan ahead to find the optimal policy




Exploration and Exploitation

e Exploration finds more information about the environment

e Exploitation exploits known information to maximize
immediate reward

e Itisimportto explore as well as to exploit



Exploration and Exploitation: Examples

e Restaurant Selection
o Exploitation: Go to your favorite restaurant
o Exploration: Try a new restaurant

e Online Banner Advertisements
o Exploitation: Show the most successful advert
o Exploration: Show a different advert

e Game Playing
o Exploitation: Play the move you believe is the best
o Exploration: Play an experimental move



Credit Assignment




Markov Decision Process (MDP)

e Markov Decision Process is a tuple <S, A, P, R, y>
o Sis afinite set of states
o Ais a set of actions (continue or discrete)
o P is a state transition probability matrix (Markov property)

Pa, — P[St_H = S|St = S,At = a]

SS

o Ris areward function

R = E[R;1|S; = s, A; = a

o y€[0, 1] is a discount factor



Return

e The return G, is the total reward from time step t:
_ 2 _ 00 k
G = R +YRipo + 7V Rz +. .. =D 1o YV Reka

e The discount factor y€[0, 1] is the present value of future rewards
o y close to 0 leads to “myoptic” evaluation
o v close to 1 leads to “far-sighted” evaluation

e Uncertainty about the future may not be fully represented

e Itis mathematically convenient to discount rewards

e Avoids infinite returns in cyclic Markov processes



Policy

e Apolicy z Is a distribution over actions given states
o Deterministic policy: a = z(s)
o Stochastic policy: w(als) = P[A,=a | S, = §]

e A policy fully defines the behaviour of an agent
e MDP policies depend on the current state
e Policies are stationary (time - independent)

At ~/ W(’St),\VIt > ()



Value Function

e The state-value function v_(s) of an MDP is the expected return starting from
state s, and then following policy x:

v:(8) = E; |G| S = s]

e The action-value function g_(s, a) is the expected reward starting from state s,
taking action a, and then following policy :

q:(s,a) = E;|G¢|S; = s, A; = a



Categorizing RL agent

e \alue based:
o No policy (implicit)
o Value function
e Policy based:
o Policy
o No value function
e Actor-Critic:
o Policy
o Value function



Categorizing RL agent

e Model Free:
o Policy and / or Value function
o No model of environment

e Model Based:
o Policy and / or Value function
o Model the environment



Policy Gradient

Model-free reinforcement learning
Direct optimization of the policy:

m9(s,a) = Plals, 0]

Advantages:
Better convergences properties
- Effective in high-dimensional and continuous action spaces
- Learning stochastic policies
Disadvantages:
- Converges to local optimum
High variance in evaluating a policy



Policy Objective Functions

- How to measure the quality of a policy: 7r9(s, a)
- Start value:

J1(0) = V™ (s1) = Ex, |v1]

- Average value:

J av_V (0)

- Average reward

|

D
3

)
/N
V)

.o 0 N’
N

)
Ve
V)
N

S
er time-

©



Policy Optimization

- Policy based Reinforcement Learning is an optimization problem
. Find B that maximizes J(0)

- Any optimization algorithm could be applied

- Gradient based optimization algorithms



Policy Optimization
J(g) — ETN?T@ [T(T)H

L a— argmaa:gETNﬂe [Zt T(St, a’t)]
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Score function
J(0) = Erry[r(7)] = [ 7o (T)r(T)dT

VoJ(0) = [eme(T)r(T)dT = [ 79 79 logme(T)r(T)dT
— ETNTI’Q(T) [V@lOQTrg (T)T(T)]
Likelihood ratio trick:

Voo (T)
o (T)

= 79(T) Vo logmy(T)

Vo7 (T) = mo(T)



Softmax policy

- Probability of action is proportional to exponentiated weight

(8, a) e(s,a)

. The score function is

Vel()gﬂe(sa a’) — ¢(37 a’) — By, [45(37 )]



Gaussian Policy

- In continuous action spaces

. Mean is a linear combination of state features: ,u(s) - ¢(3)T9
- Variance can be fixed or can also be parametrized

- Policy is Gaussian:

a~ N(u(s),0?)

. Score function:

(a—p(s))o(s)

2

Velogmy(s,a) =

o



REINFORCE Algorithm

- Replace instantaneous reward r with long-term value
. Use return as unbiased estimate of action-value function
. Initialize 6
- For each episode {51' A, 0S8, 0, vy Sy, A rT}
« Foreacht=1toT-1

0 < 0+ a</p logmg(se,ar) D, m(st,at)
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