
Reinforcement Learning: An
Introduction

Milos Jordanski, PhD student at Faculty of Mathematics

Machine Learning

Agent and Environment

● At each time step t the agent:
○ Executes action At
○ Receives observation Ot
○ Receives scalar reward Rt

● At each time step t the environment:
○ Receives action At
○ Emits observation Ot
○ Emits scalar reward Rt

Comparison with other ML paradigms

● There is no supervisor, only a reward signal
● Feedback is delayed, not instantaneous
● Sequential data, not independent and identically distributed
● Agent’s actions affect the subsequent data it receives

Learning from interaction

● The agent is not told what to
do so it must discover the
best behavior

● The actions that it takes affect
future outcomes

● It has to learn to map its current
position to actions

Examples of Reinforcement Learning

● Fly stunt manoeuvres in a helicopter

● Defeat the world champion at Backgammon / Go / Chess

● Manage an investment portfolio

● Make a humanoid robot walk

● Play Atari games better than humans

Rewards

● A reward Rt is a scalar feedback signal
● Reward indicates how well the agent is doing
● The agent’s goal is to maximize cumulative reward
● All goals in RL can be described by maximizing

cumulative reward

Examples of rewards

● Defeat the world champion at Backgammon / Go
○ + reward for winning

○ - reward for losing

● Manage an investment portfolio
○ + reward for each $ in bank

● Make a humanoid robot walk
○ + reward for forward motion

○ - reward for falling over

● Play Atari games
○ + reward for increasing the score

○ - reward for decreasing the score

Sequential Decision Making

● Goal: section sequence of actions to maximize total
cumulative reward

● Reward may be delayed

● Actions may have long term consequences

● It may be better to sacrifice immediate reward to gain more
long-term rewards

Fully Observable Environments

● Agent observes environment state
● A state St is Markov if and only if:

● The future is independent of the past given the present
● The state is sufficient statistics of the future

Learning and Planning

● Learning:
○ The environment is initially unknown
○ The agent interacts with the environment
○ The agent improves its policy

● Planning:
○ The model of environment is known
○ The agent performs computations with its model (reasoning, thought,

search)
○ The agent improves its policy

Atari example: Learning

• Rules of the game are unknown

• Learn directly from interaction

 with environment

• Pick actions on joystick, see

 observations (pixels) and scores

Atari example: Planning

● Rules of the game are known

● If the agent takes actions a from state s:
○ What would be the next state?
○ What would the score be?

● Plan ahead to find the optimal policy

Exploration and Exploitation

● Exploration finds more information about the environment

● Exploitation exploits known information to maximize
immediate reward

● It is import to explore as well as to exploit

Exploration and Exploitation: Examples

● Restaurant Selection
○ Exploitation: Go to your favorite restaurant
○ Exploration: Try a new restaurant

● Online Banner Advertisements
○ Exploitation: Show the most successful advert
○ Exploration: Show a different advert

● Game Playing
○ Exploitation: Play the move you believe is the best
○ Exploration: Play an experimental move

Credit Assignment

Markov Decision Process (MDP)

● Markov Decision Process is a tuple <S, A, P, R, 𝛾>
○ S is a finite set of states
○ A is a set of actions (continue or discrete)
○ P is a state transition probability matrix (Markov property)

○ R is a reward function

○ 𝛾∊[0, 1] is a discount factor

Return
● The return Gt is the total reward from time step t:

● The discount factor 𝛾∊[0, 1] is the present value of future rewards
○ 𝛾 close to 0 leads to “myoptic” evaluation
○ 𝛾 close to 1 leads to “far-sighted” evaluation

● Uncertainty about the future may not be fully represented
● It is mathematically convenient to discount rewards
● Avoids infinite returns in cyclic Markov processes

Policy

● A policy 𝜋 is a distribution over actions given states
○ Deterministic policy: a = 𝜋(s)
○ Stochastic policy: 𝜋(a|s) = P[At = a | St = s]

● A policy fully defines the behaviour of an agent
● MDP policies depend on the current state
● Policies are stationary (time - independent)

Value Function

● The state-value function 𝓿𝜋(s) of an MDP is the expected return starting from
state s, and then following policy 𝜋:

● The action-value function q𝜋(s, a) is the expected reward starting from state s,
taking action a, and then following policy 𝜋:

Categorizing RL agent

● Value based:
○ No policy (implicit)
○ Value function

● Policy based:
○ Policy
○ No value function

● Actor-Critic:
○ Policy
○ Value function

Categorizing RL agent

● Model Free:
○ Policy and / or Value function
○ No model of environment

● Model Based:
○ Policy and / or Value function
○ Model the environment

Policy Gradient

• Model-free reinforcement learning
• Direct optimization of the policy:

• Advantages:
• Better convergences properties
• Effective in high-dimensional and continuous action spaces
• Learning stochastic policies

• Disadvantages:
• Converges to local optimum
• High variance in evaluating a policy

Policy Objective Functions

• How to measure the quality of a policy:
• Start value:

• Average value:

• Average reward per time-step:

Policy Optimization

• Policy based Reinforcement Learning is an optimization problem
• Find θ that maximizes J(θ)
• Any optimization algorithm could be applied
• Gradient based optimization algorithms

Policy Optimization

Score function

Likelihood ratio trick:

Softmax policy

• Probability of action is proportional to exponentiated weight

• The score function is

Gaussian Policy

• In continuous action spaces
• Mean is a linear combination of state features:
• Variance can be fixed or can also be parametrized
• Policy is Gaussian:

• Score function:
•

REINFORCE Algorithm

• Replace instantaneous reward r with long-term value
• Use return as unbiased estimate of action-value function
• Initialize 𝞱
• For each episode {s

1
, a

1
, r

1
, s

2
, a

2
, r

2
, …, s

T
, a

T
, r

T
}

• For each t = 1 to T-1

