Meta Learning

Miloš Jordanski, PhD student at Faculty of Mathematics

Meta Learning

- Learning quickly:
 - Recognizing objects from only a few examples
 - New skills after just minutes of experience
- Integrate prior experience with a small amount of new information
- Learning to learn
- Applications:
 - Supervised Regression and Classification
 - Reinforcement Learning
 - Unsupervised Learning

How to learn quickly?

- Transfer Learning: train on one task, transfer to a new task:
 - Just try it and hope for the best
 - Diversity: the more varies the training, the more likely transfer is to succeed
 - Fine tune on a new task
 - New architectures suitable for transfer: Progressive Networks
- Multi-task transfer: train on a many tasks, transfer to a new task
 - Requires variety!
- Meta-Learning: learn how to learn many tasks:
 - RNN based meta-learning
 - Gradient based meta-learning

Meta-Learning Problem Set-Up

- Model $f: x \to a$
- Task $T = \{L(x_1, a_1, \dots, x_H, a_H), q(x_1), q(x_{t+1}|x_t, a_t)\}$
 - $L(x_1, a_1, \dots, x_H, a_H)$ loss function
 - $q(x_1)$ distribution over initial observations
 - $q(x_{t+1}|x_t, a_t)$ transition distribution
 - H episode length
- p(T) distribution over tasks

K-shot learning

- Goal: Train a model to learn a new task $T_i \sim p(T)$ from only K samples drawn from q_i and feedback L_{T_i} generated by T_i .
- Meta-training:
 - task $T_j \sim p(T)$
 - Model f is trained with K samples and feedback from the corresponding loss L_{T_j}
 - Test a model f on new samples from T_j
 - Model f is improved by considering how the test error on new data from q_j changes with respect to the parameters.
 - Test error on sampled tasks T_j serves as the training error of the meta-learning process

Meta-Learning Training

- Model represented by a parametrized function f_{θ}
- When adapting to a new task $T_i \sim p(T)$:

$$\theta_i' = \theta - \alpha \nabla_\theta L_{T_i}(f_\theta)$$

• The model parameters are trained by optimizing for the performance of $f_{\theta'_i}$ with respect to θ across tasks sample p(T):

$$\min_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta_i'}) = \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta - \alpha \nabla_{\theta} L_{T_i}(f_{\theta})})$$

Meta-Learning Training

• Meta-optimization via stochastic gradient descent (SGD):

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_{i} \sim p(T)} L_{T_{i}}(f_{\theta_{i}'})$$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_{i} \sim p(T)} L_{T_{i}}(f_{\theta - \alpha \nabla_{\theta} L_{T_{i}}(f_{\theta})})$$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_{i} \sim p(T)} L_{T_{i}}(f_{\theta - \alpha \nabla_{\theta} L_{T_{i}}(f_{\theta})})$$

- Meta-gradient update involves a gradient through a gradient
- Computing Hessian is computationally inefficient
- First –order approximation

Model-Agnostic Meta-Learning

- Input: p(T) distribution over tasks; α , β step size hyperparameters
- Randomly initialize $\boldsymbol{\theta}$
- While not done do:
 - Sample batch of tasks $T_i \sim p(T)$
 - For all T_i do:
 - Evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$ with respect to K examples
 - Compute adapted parameter with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} L_{T_i}(f_{\theta})$
 - End for
 - Update: $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'})$

Supervised Regression and Classification

- Task T_i generate K i.i.d observations x from q_i , H=1
- Regression MSE:

$$L_{T_i}(f_{\theta}) = \sum_{x^{j}, y^{j} \sim T_i} \left\| f_{\theta}(x^{j}) - y^{j} \right\|_{2}^{2}$$

• Classification – cross entropy:

$$L_{T_i}(f_{\theta}) = \sum_{x^j, y^j \sim T_i} y^j log f_{\theta}(x^j) + (1 - y^j)(1 - log f_{\theta}(x^j))$$

MAML For Few-Shot Supervised Learning

- Input: p(T) distribution over tasks; α , β step size hyperparameters
- Randomly initialize $\boldsymbol{\theta}$
- While not done do:
 - Sample batch of tasks $T_i \sim p(T)$
 - For all T_i do:
 - Sample K datapoints $D = \{x^j, y^j\}$ from T_i
 - Evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$ using D and L_{T_i}
 - Compute adapted parameter with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} L_{T_i}(f_{\theta})$
 - Sample datapoints $D'_i = \{x^j, y^j\}$ from T_i for the meta-update
 - End for
 - Update: $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'})$ using each D'_i and L_{T_i}

Reinforcement Learning

Each RL task T_i contains an initial state distribution q_i(x₁), transition distribution q_i(x₁|x_t, a_t) and loss function L_{Ti}:

$$L_{T_i}(f_ heta) = -E_{x_t,a_t \sim f_ heta,q_{T_i}}\left[\sum_{t=1}^H R_t(x_t,a_t)
ight]$$

• In K-shopt RL, K rollouts from f_{θ} and task T_i may be used for adaptation on a new task T_i .

MAML for Reinforcement Learning

- Input: p(T) distribution over tasks; α , β step size hyperparameters
- Randomly initialize $\boldsymbol{\theta}$
- While not done do:
 - Sample batch of tasks $T_i \sim p(T)$
 - For all T_i do:
 - Sample K trajectories $D = \{(x_1, a_1 \dots, x_H, a_H)\}$ using f_{θ} in T_i
 - Evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$ using D and L_{T_i}
 - Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} L_{T_i}(f_{\theta})$
 - Sample trajectories $D'_i = \{(x_1, a_1 \dots, x_H, a_H)\}$ using f_{θ} in T_i
 - End for
 - Update: $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'})$ using each D'_i and L_{T_i}

Results - Regression

- Sine wave with amplitude varies within [0.1, 5.0] and phase varies within [0, π]
- x uniformly from [-5, 5]
- Loss: mean-squared error
- Neural Network model with 2 hidden layers of size 40 with ReLU
- One update with K sample, α = 0.01
- Baselines:
 - pretraining on all of the tasks and fine-tuning with gradient descent on the K provided points
 - true amplitude and phase

Results - Regression

Results - Classification

- Omniglot dataset: 20 instances of 1623 characters from 50 different alphabets. Each instance was drawn by a different person
- MiniImagenet dataset: involves 64 training classes, 12 validation classes, and 24 test classes
- 4 modules with a 3 × 3 convolutions and 64 filters, followed by batch normalization, a ReLU nonlinearity, and 2 × 2 max-pooling
- For Omniglot, strided convolutions instead of max-pooling.

Omniglot results

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	—	
MAML, no conv (ours)	$89.7 \pm \mathbf{1.1\%}$	$97.5 \pm \mathbf{0.6\%}$	-	
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	<mark>95.0%</mark>	98.6%
MAML (ours)	$98.7\pm\mathbf{0.4\%}$	$99.9 \pm \mathbf{0.1\%}$	$95.8 \pm \mathbf{0.3\%}$	$98.9 \pm \mathbf{0.2\%}$

Minilmage results

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	
MAML, first order approx. (ours)	$48.07 \pm \mathbf{1.75\%}$	$63.15 \pm \mathbf{0.91\%}$	
MAML (ours)	$48.70 \pm \mathbf{1.84\%}$	$63.11 \pm \mathbf{0.92\%}$	

Results - Reinforcement Learning

- Neural network policy with two hidden layers of size 100, with ReLU nonlinearities
- Planar cheetah and a 3D quadruped
- Baselines:
 - pretraining one policy on all of the tasks and then fine-tuning
 - training a policy from randomly initialized weights
 - an oracle policy

Results - Reinforcement Learning

• 2D Navigation

Results - Reinforcement Learning

- Locomotion high-dimensional locomotion tasks with the MuJoCo simulator
 - planar cheetah
 - a 3D quadruped

THANKS!