Meta Learning

Miloš Jordanski, PhD student at Faculty of Mathematics

Meta Learning

- Learning quickly:
	- Recognizing objects from only a few examples
	- New skills after just minutes of experience
- Integrate prior experience with a small amount of new information
- Learning to learn
- •Applications:
	- Supervised Regression and Classification
	- Reinforcement Learning
	- Unsupervised Learning

How to learn quickly?

- Transfer Learning: train on one task, transfer to a new task:
	- Just try it and hope for the best
	- Diversity: the more varies the training, the more likely transfer is to succeed
	- Fine tune on a new task
	- New architectures suitable for transfer: Progressive Networks
- Multi-task transfer: train on a many tasks, transfer to a new task
	- Requires variety!
- Meta-Learning: learn how to learn many tasks:
	- RNN based meta-learning
	- **• Gradient based meta-learning**

Meta-Learning Problem Set-Up

- Model $f: x \rightarrow a$
- Task $T = \{L(x_1, a_1, ... x_H, a_H), q(x_1), q(x_{t+1} | x_t, a_t)\}\$
	- $L(x_1, a_1, ... x_H, a_H)$ loss function
	- $q(x_1)$ distribution over initial observations
	- $q(x_{t+1} | x_t, a_t)$ transition distribution
	- H episode length
- $p(T)$ distribution over tasks

K-shot learning

- Goal: Train a model to learn a new task $T_i \sim p(T)$ from only K samples drawn from q_i and feedback L_{T_i} generated by T_i .
- Meta-training:
	- task $T_i \sim p(T)$
	- Model f is trained with K samples and feedback from the corresponding loss L_{T_i}
	- Test a model f on new samples from T_i
	- Model f is improved by considering how the test error on new data from q_i changes with respect to the parameters.
	- Test error on sampled tasks T_i serves as the training error of the metalearning process

Meta-Learning Training

- Model represented by a parametrized function f_{θ}
- When adapting to a new task $T_i \sim p(T)$:

$$
\theta_i' = \theta - \alpha \nabla_{\theta} L_{T_i}(f_{\theta})
$$

• The model parameters are trained by optimizing for the performance of f_{θ_i} with respect to θ across tasks sample $p(T)$:

$$
\min_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'_i}) = \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta - \alpha \nabla_{\theta} L_{T_i}(f_{\theta})})
$$

Meta-Learning Training

• Meta-optimization via stochastic gradient descent (SGD):

$$
\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i} (f_{\theta_i'}) \qquad \theta \xrightarrow{\text{meta-learning/adaptation}} \theta
$$

$$
\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i} (f_{\theta - \alpha \nabla_{\theta} L_{T_i} (f_{\theta)})} \qquad \forall \mathcal{L}_1 \searrow \theta_2^*
$$

$$
\theta_1^*
$$

- Meta-gradient update involves a gradient through a gradient
- Computing Hessian is computationally inefficient
- First –order approximation

Model-Agnostic Meta-Learning

- Input: $p(T)$ distribution over tasks; α , β step size hyperparameters
- Randomly initialize θ
- While not done do:
	- Sample batch of tasks $T_i \sim p(T)$
	- For all T_i do:
		- Evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$ with respect to K examples
		- Compute adapted parameter with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} L_{T_i}(f_{\theta})$
	- End for
	- Update: $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'})$

Supervised Regression and Classification

- Task T_i generate K i.i.d observations x from q_i , H=1
- Regression $-$ MSE:

$$
L_{T_i}(f_{\theta}) = \sum_{x^j, y^j \sim T_i} ||f_{\theta}(x^j) - y^j||_2^2
$$

• Classification – cross entropy:

 $\overline{}$

$$
L_{T_i}(f_{\theta}) = \sum_{x^j, y^j \sim T_i} y^j log f_{\theta}(x^j) + (1 - y^j)(1 - log f_{\theta}(x^j))
$$

MAML For Few-Shot Supervised Learning

- Input: $p(T)$ distribution over tasks; α, β step size hyperparameters
- Randomly initialize θ
- While not done do:
	- Sample batch of tasks $T_i \sim p(T)$
	- For all T_i do:
		- Sample K datapoints $D = \{x^j, y^j\}$ from T_i
		- Evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$ using D and L_{T_i}
		- Compute adapted parameter with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} L_{T_i}(f_{\theta})$
		- Sample datapoints $D_i' = \{x^j, y^j\}$ from T_i for the meta-update
	- End for
	- Update: $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'})$ using each D'_i and L_{T_i}

Reinforcement Learning

• Each RL task T_i contains an initial state distribution $q_i(x_1)$, transition distribution $q_i(x_{t+1} | x_t, a_t)$ and loss function L_{Ti} :

$$
L_{T_i}(f_\theta) = - E_{x_t, a_t \sim f_\theta, q_{T_i}}\left[\textstyle \sum_{t=1}^H R_t(x_t, a_t) \right]
$$

• In K-shopt RL, K rollouts from f_{θ} and task T_i may be used for adaptation on a new task T_i.

MAML for Reinforcement Learning

- Input: $p(T)$ distribution over tasks; α, β step size hyperparameters
- Randomly initialize θ
- While not done do:
	- Sample batch of tasks $T_i \sim p(T)$
	- For all T_i do:
		- Sample K trajectories $D = \{(x_1, a_1, ..., x_H, a_H)\}\$ using f_θ in T_i
		- Evaluate $\nabla_{\theta} L_{T_i}(f_{\theta})$ using D and L_{T_i}
		- Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} L_{T_i}(f_{\theta})$
		- Sample trajectories $D'_i = \{(x_1, a_1 ... , x_H, a_H)\}\$ using f_θ in T_i
	- End for
	- Update: $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{T_i \sim p(T)} L_{T_i}(f_{\theta'})$ using each D'_i and L_{T_i}

Results - Regression

- Sine wave with amplitude varies within [0.1, 5.0] and phase varies within [0, π]
- x uniformly from [-5, 5]
- Loss: mean-squared error
- Neural Network model with 2 hidden layers of size 40 with ReLU
- One update with K sample, α = 0.01
- Baselines:
	- pretraining on all of the tasks and fine-tuning with gradient descent on the K provided points
	- true amplitude and phase

Results - Regression

Results - Classification

- Omniglot dataset: 20 instances of 1623 characters from 50 different alphabets. Each instance was drawn by a different person
- MiniImagenet dataset: involves 64 training classes, 12 validation classes, and 24 test classes
- \cdot 4 modules with a 3 \times 3 convolutions and 64 filters, followed by batch normalization, a ReLU nonlinearity, and 2×2 max-pooling
- For Omniglot, strided convolutions instead of max-pooling.

Omniglot results

MiniImage results

Results - Reinforcement Learning

- Neural network policy with two hidden layers of size 100, with ReLU nonlinearities
- Planar cheetah and a 3D quadruped
- Baselines:
	- pretraining one policy on all of the tasks and then fine-tuning
	- training a policy from randomly initialized weights
	- an oracle policy

Results - Reinforcement Learning

• 2D Navigation

Results - Reinforcement Learning

- Locomotion high-dimensional locomotion tasks with the MuJoCo simulator
	- planar cheetah
	- a 3D quadruped

THANKS!