Introduction to Convolutional Neural Networks and Computer Vision Applications

Goran Dubajić

11/04/2018

Outline

■ Motivation

- **Example 13 Convolution and pooling layer**
- Basic elements of ConvNet architecture
- History
- **E** Notable architectures for image classification

Computer vision

- Spatial correlation
- **Invariance to translation,** rotation, lighting...
- **· Hierarchical structure**

Winter is here. Yo to
the store and buy some
snow shovels.

Winter is here. Go to the store and buy some snow shovels.

Convolutional neural networks (ConvNets)

- Extension of multilayer perceptron
- **Feed-forward architecture**
- Building blocks suitable for CV problems
- **Biologically inspired**
- **Example 1** Led to breakthroughs in many CV problems in recent years

ImageNet 1K classification challenge (2010-2014)

- 1000 classes
- 1.28 million training images
- 50.000 test images

red fox (100) hen-of-the-woods (100) ibex (100) goldfinch (100) flat-coated retriever (100) hamster (100) Blenheim spaniel (100) tiger (100) porcupine (100) stingray (100) muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66) spotlight (66) l adle (65) restaurant (64) letter opener (59) hook (66)

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge, IJCV, 2015 http://www.image-net.org/challenges/LSVRC/

ImageNet 1K classification challenge (2010-2014)

http://image-net.org/challenges/talks/ILSVRC+MSCOCO_12_17_15_introduction.pdf

Outline

- **Motivation**
- Convolution and pooling layer
- Basic elements of ConvNet architecture
- History
- **E** Notable architectures for image classification

Computer Vision Problem

vertical edges

horizontal edges

Vertical edge detection examples

T Microsoft

Learning to detect edges

Padding

- Allowing filter to go outside input image
- **Usually pad with zeros**
- **Used for adjusting output size**
	- Example: stride = 1, padding = (kernel size -1) / 2

Padding - Valid and Same convolutions

"Valid": Only convolve with valid pixels "Same": Pad so that output size is the same as the input size.

Stride

- **Distance between consecutive kernel applications**
- **Used for reducing spatial resolution**

Strided convolution

 $3 | 4 | 4$ $1 \mid 0 \mid 2$ -1 0 3 $*$ 102 =

Summary of convolutions

 $n \times n$ image $f \times f$ filter

padding *p* stride *s*

$$
\left\lfloor \frac{n+2p-f}{s}+1\right\rfloor \times \left\lfloor \frac{n+2p-f}{s}+1\right\rfloor
$$

Convolutions over volumes

=

=

4 x 4

Pooling layer: Max and Average pooling

Hyperparameters: **f** : filter size **S** : stride

Outline

- **Motivation**
- Convolution and pooling layer
- Basic elements of ConvNet architecture
- History
- **E** Notable architectures for image classification

ConvNets are a form of deep learning

- **E** Many simple nonlinear layers
- **EXEC** Features are learned from data, not handcrafted
- **Example 2** Features are hierarchical

Traditional approach

- Sequence of nonlinear transformations
- **Handcrafted components**
- Machine learned components trained independently

Basic ConvNet architecture

- Convolution layer
- Pooling layer
- **Fully connected layer (like MLP)**
- **Various normalization layers**
- Other...

More recent ConvNet architectures

- Contain parallel branches
- **Directed acyclic graph (DAG)**

Activations

- Interpreted as multi-channel "images"
	- Network input: 1 channel (grayscale) or 3 channels (RGB)
	- Other activations can have more channels
- Channels are also called feature maps

Activations

- **Usually in practice**
	- **•** Spatial dimensions decrease with depth
	- Number of channels increases with depth

Fully connected (FC) layer

▪ Same as "hidden" layer in MLP

Fully connected layer

- **Output has 1 x 1 spatial size**
- **Example 1** Last FC layer is followed by softmax function
	- Converts activations to probabilities

Local connectivity

- Output neuron is connected only to "nearby" input neurons
	- **Example 2** Neighborhood in spatial coordinates
- **Fewer parameters and computation ■ Many zero weights**

Weight sharing

- All output neurons have the same set of weights
- **Example 3 Stationarity: same features are of** interest in all parts of image

Convolution

■ Like in image processing, but filter coefficients are learned

Action function

\nOutput

\n
$$
y = g(W * x)
$$
\nKernel (filter)

▪ Variant with additive (*bias*) and multiplicative constants

Scaling (trained) Bias

$$
y = cg(W*x+b)
$$

Multichannel input

- Each input has its own filter
- Results are added pixelwise
	- **Before applying activation** function

$$
y = g\left(\sum_{c} W_c * x_c\right)
$$

Index of input channel

Multichannel input: equivalent view

■ A 3D filter "slides" across multichannel input image

Y. LeCun, M. A. Ranzato

Multichannel output

 $y_n =$

- Computing multiple feature maps of the same input
- All neurons "looking" at some region compute feature vector for that region
- **Example 1** Similar to hand-engineered features (e. g. Gabor) but trained

Output channel (feature map)

 \mathcal{C}_{0}^{0}

 $W_{nc} * x_c$

Kernel (filter) Input channel

Multichannel output: equivalent view

■ Weights of convolutional layer form a 4D tensor

Convolutional layer

- Set of convolutional filters with activation function
- Output (spatial) size \approx (input size + pad – kernel size + 1) / stride
- Parameter count = Input channels x output channels x kernel size²
- Operation (multiply + add) count = input height x input width x input channels x output height x output width x output channels

1 x 1 convolutional layer

- All kernels have spatial size 1 x 1
- **Used for adjusting channel count**
- Equivalent to applying the same FC layer to each pixel's feature vector
- **Input and output have the same spatial size**

Pooling

• Combining outputs of nearby input neurons ■ Max pooling

> $y_{ij} = \max_{n \leq j}$ p, q $x_{i+p,j+q}$

E Average pooling

$$
y_{ij} = \frac{1}{k^2} \sum_{p,q=1}^k x_{i+p,j+q}
$$

■ L1, L2 norm...

Example

■ Max pooling with kernel size 3 x 3 and stride 2

Multichannel input and output

■ Applied independently to each input channel \blacksquare Input channel count \equiv output channel count

Pooling layer

- Only pooling operation, without activation function
- **Pooling operation can be nonlinear**
	- **E.g. max pooling**
- Pooling operation is differentiable
	- **E** Allows backpropagation
- **Exercise 5 Stride and padding**

Pooling layer

- Output (spatial) size \approx (input size + padding – kernel size + 1) / stride
- \blacksquare Parameter count = 0
- \blacksquare Operation (multiply + add) count = output height x output width x channel count x kernel size²

Invariance to local translation

ELocality is determined by kernel size

Outline

- **Motivation**
- Convolution and pooling layer
- Basic elements of ConvNet architecture
- History
- **E** Notable architectures for image classification

Cat visual cortex

■ Simple, complex, and hyper-complex cells

Hubel and Wiesel, Receptive fields of single neurones in the cat's striate cortex, 1959

Human visual cortex

EXPERIENCY OF Features from low to high level

S. J. Thorpe, M. Fabre-Thorpe, Seeking Categories in the Brain, Science, 2001.

Neocognitron [Fukushima 1980]

■ No supervised learning algorithm

Convolutional network for handwriting recognition [Le Cun et al. 1989-1998]

Fall and rise of convolutional networks

- Rise of Support Vector Machines (SVM) in mid-1990s
	- **Pros: theory, convex optimization**
	- Cons: handcrafted features
- \blacksquare Return of convolutional networks from \sim 2012
	- Availability of data and compute resources
	- **EXTERENGERITH Trained features outperform handcrafted features**
	- **Enables attacking harder problems**

Today: convolutional networks are everywhere

- Handwriting
- Objects in image
- **Example Scene understanding**
- OCR "in the wild"
- **Traffic signs**
- **Pedestrians**
- **· Image segmentation**
- **E** Activity in video
- **Image captioning**
- **Depth estimation**
- **Extures**

▪ ...

Body pose

Outline

- **Motivation**
- Convolution and pooling layer
- Basic elements of ConvNet architecture
- History
- Notable architectures for image classification

Image classification

hammer chime chime dog

ImageNet Large-scale Visual Recognition Challenge 2012 http://image-net.org/challenges/LSVRC/2012/ilsvrc2012.pdf

AlexNet [Krizhevsky et al. 2012]

■ Restarted interest in convolutional networks in computer vision

Conv 11x11, 96 outputs + ReLU Local normalization Max pooling 2x2 subsampling Conv 11x11, 256 outputs + ReLU Local normalization Max pooling 2x2 subsampling Conv 3x3, 384 outputs + ReLU Conv 3x3, 384 outputs + ReLU Conv 3x3, 256 outputs + ReLU Max pooling Fully connected 4096 outputs + ReLU Fully connected 4096 outputs + ReLU Fully connected, 1000 outputs + softmax

AlexNet

- 60 million parameters
- 832 million operations (multiply-adds)
- Top-5 classification error 16% on ImageNet 1K test
	- Winner of ILSVRC 2012 (classification and detection)
	- **Previous record 26%**

AlexNet training

- Supervised learning, gradient descent w/ backpropagation
	- 90 epochs of ImageNet 1K training set (1.3 million images)
	- 5-6 days on 2 x NVIDIA GTX 580 (3GB)
- **Techniques**
	- ReLU activation function
	- **ELocal normalization**
	- **Dropout**
	- **Data augmentation**

Local normalization

- Normalize activations by local statistics
	- E.g. mean and standard deviation
	- Statistics from a (3D) neighborhood

- **Encourage "competition" for high activations**
	- **Prevent coadaptation of neurons**
	- **.** If all activations are high, they all get reduced by a lot
	- **Bio-inspired: lateral inhibition**

Local normalization

•
$$
\text{AlexNet}
$$
 $b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j = \max(0, i - n/2)}^{\min(N-1, i + n/2)} (a_{x,y}^j)^2 \right)^{\beta}$

- Contrast normalization [Jarret et al. 2009]
	- **Example Stats are computed from all channels**
	- **. Weighted mean, weights decay with spatial** distance as 2D Gaussian

Channels Width Height

$$
y_{cij} = \frac{x_{cij} - m_{cij}}{\max(k, \sigma_{cij})}
$$

Standard deviation

Mean

Dropout

- Regularization technique
- In each forward pass remove a random subset of neurons in a given layer
	- Those neurons do not participate in backpropagation either
	- **Usually remove each neuron independently with fixed** probability (usually 0.5)
- **Prevents coadaptation of neurons, makes network more** robust

Dropout

- At runtime multiply activations of neurons in layers subject to dropout
	- \blacksquare Factor 1/(1-p), where p is the dropout probability
	- **Exponential family of networks with shared weights**
	- Expected activation of a randomly chosen network from the family
- **BIOWS down convergence**
- **In AlexNet applied to first two FC layers**

Data augmentation

- **Problem: not enough training data (slow labeling)**
- Data augmentation: synthesizing a large amount of "realistic" training examples from a small amount of real examples

Example: image classification

Types of variations

- **Invariances built into the architecture**
	- **Example 1** Local translation (due to pooling)
	- Local change in lighting (due to pooling, local normalization...)
- Most useful are those that are not built in
	- Rotation, scaling, noise...

Data augmentation in AlexNet

- Random crop 224 x 224 pixels
- Horizontal flip: with probability 0.5 replace image with its mirror image (with respect to vertical axis)
- **Example 1 Lighting augmentation**
	- **For each image choose a random RGB displacement, add it to each** pixel
	- "Realistic" RGB displacement is obtained from training set statistics
		- PCA (Principal Component Analysis) of all RGB pixel values

VGGNet [Simonyan and Zisserman 2014]

- **E** Simplified design, increased depth
	- Convolution: kernel 3 x 3, stride 1, padd
	- Max pooling: kernel 2 x 2, stride 2
- \blacksquare Idea: replace 5 x 5 layer with two 3 x layers
	- **ELESS computation, more nonlinearity**

VGGNet [Simonyan and Zisserman 2014]

- Top-5 classification error 7.3% on ImageNet 1K test ■ Second place in ILSVRC 2014
- 138 million parameters (more than AlexNet)
- 15.3 billion operations (much slower than AlexNet)

GoogLeNet

[Szegedy et al. 2014]

- **·** Inception module
	- **Branching**
	- \blacksquare 1 x 1 convolutions for dimensionality reduction
	- 2 auxiliary loss functions improve convergence

GoogLeNet [Szegedy et al. 2014]

- 22 layers with weights
- Only 5 million parameters (12x fewer than AlexNet) ■ No FC layers
- 1.5 billion operations (2x more than AlexNet)
- Top-5 classification error 6.7% on ImageNet 1K test
	- **Winner of ILSVRC 2014**

Residual networks (ResNets) [He et al. 2015]

- Extremely deep (152 layers)
- **Top-5 classification error 3.6%** on ImageNet 1K test
- **Winner of all 5 disciplines in** ILSVRC & COCO 2015

ImageNet Classification top-5 error (%)

Kaiming He

Residual unit

- **E** Small number of convolution layers with ReLU activation
	- **Plus normalization layers (not shown)**
- **EXTERNAL EXERGITE Learns difference between its input and** target output
- **· Improves convergence**
	- **Without residual approach, increasing** depth hurts accuracy

Standardna mreža

Standardna

Residual networks with "bottleneck"

- Reduces the number of parameters and operations
- **Internal dimension reduction**
	- Also used in GoogLeNet
	- **Bottleneck units have more channels, but equal** complexity as non-bottleneck units

Kaiming He

ResNet architectures

Kaiming He

ResNet properties

- Almost no max-pooling
	- Reducing spatial dimensions is done in convolution layers
- No FC layers
- No dropout
- No local normalization
- **Uses batch normalization**
	- **Further improves convergence**

ResNet properties

- **Training**
	- 120 epochs of ImageNet 1K training (1.3 million images)
	- 2-3 weeks on 8 GPUs (a few days for ResNet-18)
- Even ResNet-152 is slightly faster than VGG-16

Batch normalization [Ioffe and Szegedy 2015]

- Problem: statistics of inputs to a given layer change over time
	- The change depends on weight updates in previous layers
	- **EXA** Changes are more severe in deeper layers
	- **.** This limits depth of networks that can be trained

$$
y_c = \alpha_c \frac{x_c - E[x_c]}{\sqrt{\text{Var}[x_c]}} + \beta_c \frac{x_c}{\sqrt{Var[x_c]}}
$$

Trained additive/multiplicative constants (one value per channel)

All activations in channel c (minibatch size x width x height)

Batch normalization

- Reduces dependence on initial weights
- **E** Allows higher learning rate values
- **EXTERG** Has regularization effect
	- **Examples within the same minibatch influence each other**
	- Adds "noise" coming from other samples
	- Reduces need for dropout and other normalizations

References

- CS231n Winter 2016
- **Example 12 [Convolutional Neural Networks](https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv) (2017)**
- **Experience Convolutional Neural Networks**
- **Example 23 Fernanding Channel State Industry Coursera: Improving Deep Neural Networks: Hyperparameter** tuning, Regularization and Optimization

