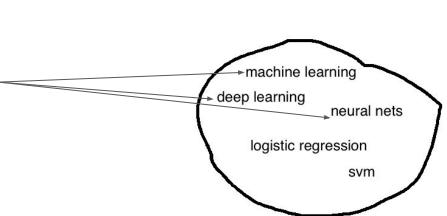
Multi-label classification via joint space embeddings


Multi-label classification

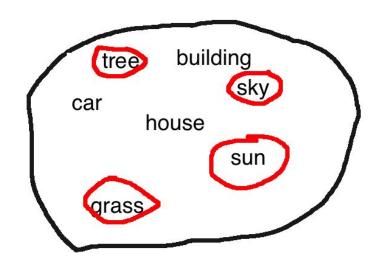
Instances Labels

The San Markov is whiteen as in the of the control of the control

As the first pollution of mutualities in the control of the contro

A Role for Parasites in Stabilising
the Fig-Pollinator Mutualism
state is an interest to the pollinator of the pollinato

Not to be confused with multi-class classification


Instances

| Property | Property

Image annotations problem

Instance Labels

a AN FRANKA AN FRANKA

Image annotations problem

Datasets:

- Caltech-256
- Pascal-VOC
- ImageNet 2010 (4m imgs / 16k labels)
- Web (16m imgs / 109k labels)

Requirements:

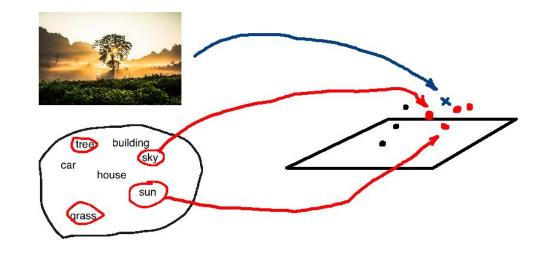
- Scalable training and testing times
- Scalable memory usage

Ideally, we would like a fast algorithm that fits on a laptop.

a Astradha Astradha Astradha Astradha Astradha Astradha Astradha Astradha A

Joint space embeddings

IJCAI 2011 - Wsabie - jweston@google.com


a La Branch Branch

Embeddings

- Embedding of an object is vector representation of that object in that vector space
- Similar objects are mapped to close vector representations
- In case of low-dimensional representations savings in memory and computing time are possible

Joint space embeddings

```
images x \in \mathbb{R}^d annotations i \in \mathcal{Y} = \{\bar{1}, \dots, Y\} \mathbb{R}^D \Phi_I(x) : \mathbb{R}^d \to \mathbb{R}^D \Phi_W(i) : \{1, \dots, Y\} \to \mathbb{R}^D \Phi_I(x) = Vx \Phi_W(i) = W_i f_i(x) = \Phi_W(i)^\top \Phi_I(x) = W_i^\top Vx
```


Joint space embeddings - rank function

LA CONTRACTOR OF THE SERVICE OF THE

$$f(x) = W^\top V x$$

$$f_{tree}(x) = 13.6$$

$$f_{buiding}(x) = 2.1$$

$$f_{house}(x) = 1.5$$

$$f_{car}(x) = 1.2$$

$$f_{sun}(x) = 11.6$$

$$f_{grass}(x) = 12.6$$

$$f_{sky}(x) = 11.7$$

$$rank_y(f(x)) = \sum_{i \neq y} I(f_i(x) \geq f_y(x))$$

$$rank_y^1(f(x)) = \sum_{i \neq y} I(1 + f_i(x) > f_y(x)).$$

Joint space embeddings - loss function

$$\begin{aligned} rank_y(f(x)) &= \sum_{i \neq y} I(f_i(x) \geq f_y(x)) \\ err(f(x), y) &= L\left(rank_y(f(x))\right) \frac{rank_y(f(x))}{rank_y(f(x))} \\ err(f(x), y) &= L(rank_y(f(x))) \end{aligned} \\ err(f(x), y) &= \sum_{i \neq y} L\left(rank_y(f(x))\right) \frac{I(f_i(x) \geq f_y(x))}{rank_y(f(x))} \\ L(k) &= \sum_{j=1}^k \frac{1}{j} \end{aligned} \\ err(f(x), y) &= \sum_{i \neq y} L\left(rank_y(f(x))\right) \frac{I(1+f_i(x) \geq f_y(x))}{rank_y(f(x))} \end{aligned}$$

NA TANDAN ANTANDAN A

$$\overline{err}(f(x),y) = \sum_{i \neq y} L\left(rank_y^1(f(x))\right) \frac{|1 - f_y(x) + f_i(x)|_+}{rank_y^1(f(x))}$$

Joint space embeddings - optimization

$$\overline{err}(f(x), y) = \sum_{i \neq y} L\left(rank_y^1(f(x))\right) \frac{|1 - f_y(x) + f_i(x)|_+}{rank_y^1(f(x))}$$

$$Risk(f) = \int \overline{err}(f(x), y) dP(x, y).$$

$$\overline{err}_{\bar{y}}(f(x), y, \bar{y}) = L(rank_y^1(f(x))) |1 - f_y(x) + f_{\bar{y}}(x)|_{+}$$

s A BANGA A BA

$$rank_y^1(f(x)) \approx \left| \frac{Y-1}{N} \right|$$

$$f_{tree}($$
) > 1+ $f_{car}($

$$\beta_{t+1} = \beta_t - \gamma_t \frac{\partial \overline{err}(f(x), y, \overline{y})}{\partial \beta_t}.$$

Wsabie - Algorithm

Algorithm 1 Online WARP Loss Optimization

```
Input: labeled data (x_i, y_i), y_i \in \{1, \dots, Y\}.
repeat
   Pick a random labeled example (x_i, y_i)
   Let f_{u_i}(x_i) = \Phi_W(y_i)^{\top} \Phi_I(x_i)
   Set N=0.
   repeat
      Pick a random annotation \bar{y} \in \{1, \dots, Y\} \setminus y_i.
      Let f_{\bar{y}}(x_i) = \Phi_W(\bar{y})^{\top} \Phi_I(x_i)
      N = N + 1.
   until f_{\bar{y}}(x_i) > f_{y_i}(x_i) - 1 or N \geq Y - 1
  if f_{\bar{y}}(x_i) > f_{y_i}(x_i) - 1 then
      Make a gradient step to minimize:
             L(|\frac{Y-1}{N}|)|1-f_y(x_i)+f_{\bar{y}}(x_i)|_+
      Project weights to enforce constraints (2)-(3).
   end if
until validation error does not improve.
```

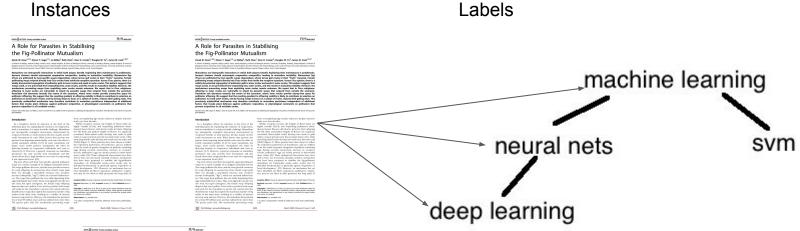
Wsabie results

Method	ImageNet 2010		Web	
	prec@1	prec@10	prec@1	prec@10
approx kNN	1.55%	0.41%	0.30%	0.34%
One-vs- Rest	2.27%	1.02%	0.52%	0.29%
Wsabie	4.03%	1.48%	1.03%	0.44%

Wsabie results

Label	Nearest Neighbors				
barack obama	barak obama, obama, barack, barrack obama, bow wow				
david beckham	beckham, david beckam, alessandro del piero, del piero				
santa	santa claus, papa noel, pere noel, santa clause, joyeux noel				
dolphin	delphin, dauphin, whale, delfin, delfini, baleine, blue whale				
cows	cattle, shire, dairy cows, kuh, horse, cow, shire horse, kone				
rose	rosen, hibiscus, rose flower, rosa, roze, pink rose, red rose				
eiffel tower	eiffel, tour eiffel, la tour eiffel, big ben, paris, blue mosque				
ipod	i pod, ipod nano, apple ipod, ipod apple, new ipod				
f18	f 18, eurofighter, f14, fighter jet, tomcat, mig 21, f 16				

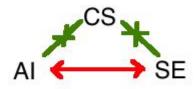
a La Branche a La

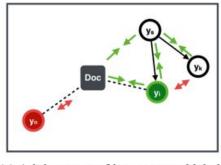

Wsabie results

delfini, orca, dolphin , mar, delfin, dauphin, whale, cancun, killer whale, sea world	
blue whale, whale shark, great white shark, underwater, white shark, shark, manta ray, dolphin , requin, blue shark, diving	
barrack obama, barak obama, barack hussein obama, barack obama , james marsden, jay z, obama, nelly, falco, barack	
eiffel, paris by night, la tour eiffel, tour eiffel, eiffel tower , las vegas strip, eifel, tokyo tower, eifel tower	

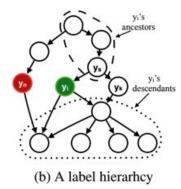
Leveraging label hierarchies

ECML 2016 - Predicting unseen labels using label hierarchies in large-scale multi-label learning - Jinseok Nam @ TU Darmstadt


Text classification problem with label hierarchies



A Role for Parasites in Stabilising the Fig-Pollinator Mutualism


The same "and "a the same and the same and

Learning with hierarchical structures over labels

(a) A joint space of instances and labels

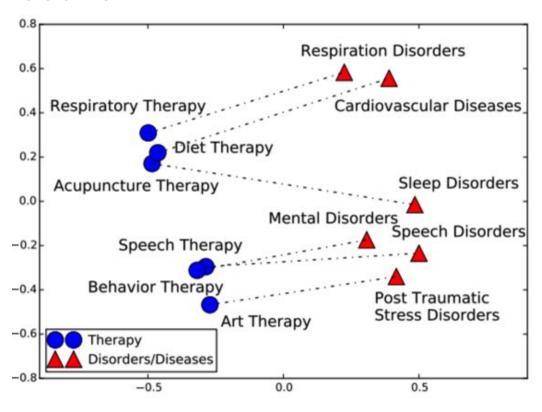
$$\Omega(\mathbf{\Theta}_{H}) = \sum_{n=1}^{N} \frac{1}{\mathcal{Z}_{A}} \sum_{i \in \mathcal{Y}_{n}} \sum_{s \in \mathcal{S}_{A}(i)} -\log p(y_{s}|y_{i}, \mathbf{x}_{n})$$

$$+ \sum_{l=1}^{Y} \sum_{q \in \mathcal{S}_{P}(l)} \sum_{k \in \mathcal{S}_{C}(q)} L\left(rank_{y}^{1}(\mathbf{u}_{l})\right) \left[1 - \mathbf{u}_{q}^{T}\mathbf{u}_{l} + \mathbf{u}_{k}^{T}\mathbf{u}_{l}\right]_{+}$$

$$p(y_s|y_i, \mathbf{x}_n) = \frac{\exp(\mathbf{u}_s^T \hat{\mathbf{u}}_i^{(n)})}{\sum_{v \in L} \exp(\mathbf{u}_v^T \hat{\mathbf{u}}_i^{(n)})},$$

a Harrich har Harrich Arrich har Harrich Arrich Harrich Harrich

WsabieH results


Datasets

- RCV1-v2 newswire articles 103 labels organized in a tree 800k documents
- OHSUMED medical articles 350k documents

	RCV1-v2		OHSUMED	
	Wsabie	Wsabie _H	Wsabie	Wsabie _H
AvgP	94.34	94.39	45.72	45.76
RL	0.44	0.44	4.09	3.72

a NA BALLA ROLL A B

WsabieH results

o La franche de la franche de

Predicting unseen labels

Hierarchical relations provide embeddings even of labels which are never seen in data. Therefore, they can appear in predictions in a meaningful way although data don't provide information about it.

Thanks:)

a Haralka Aradka Aradka Aradka Aradka Aradka Aradka Aradka Aradka Aradka A

References

Weston, J., Bengio, S., Usunier, N.: Wsabie: Scaling up to large vocabulary image annotations

Jinseok, N., Eneldo, M., Hyunwoo, J., Furnkranz, J.: Predicting unseen labels using label hierarchies in large-scale multi-label learning

https://github.com/xdshang/wsabie